Min-infinite divisibility of the bivariate Marshall-Olkin copulas

被引:1
|
作者
Shenkman, Natalia [1 ]
机构
[1] Tech Univ Munich, Dept Math, D-85747 Garching, Germany
关键词
Marshall-Olkin copula; min-infinite divisibility; RCSI; TP2; MULTIVARIATE DISTRIBUTIONS; MODEL;
D O I
10.1080/03610926.2020.1747080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are many well-known bivariate distributions, such as the normal distribution, for which the question of whether they are max- or min-infinite divisible was settled a long time ago. However, despite its popularity, the bivariate Marshall-Olkin family of copulas was never the target of such an investigation, presumably due to the deterrent character of its density. Herein, we show that the challenges faced can be overcome with ease thanks to a convenient factorization.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 50 条
  • [1] A generalization of Archimedean and Marshall-Olkin copulas family
    Xie, Jiehua
    Yang, Jingping
    Zhu, Wenhao
    Zou, Wei
    [J]. FUZZY SETS AND SYSTEMS, 2022, 428 : 1 - 33
  • [2] Reparameterizing Marshall-Olkin copulas with applications to sampling
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (01) : 59 - 78
  • [3] Multivariate Generalized Marshall-Olkin Distributions and Copulas
    Lin, Jianhua
    Li, Xiaohu
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (01) : 53 - 78
  • [4] The Pickands representation of survival Marshall-Olkin copulas
    Mai, Jan-Frederik
    Scherer, Matthias
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (5-6) : 357 - 360
  • [5] THE STABILITY OF A CHARACTERIZATION OF THE BIVARIATE MARSHALL-OLKIN DISTRIBUTION
    BAXTER, LA
    RACHEV, ST
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (02) : 563 - 571
  • [6] Weighted Marshall-Olkin bivariate exponential distribution
    Jamalizadeh, Ahad
    Kundu, Debasis
    [J]. STATISTICS, 2013, 47 (05) : 917 - 928
  • [7] BIVARIATE MARSHALL-OLKIN EXPONENTIAL SHOCK MODEL
    Mohtashami-Borzadaran, H. A.
    Jabbari, H.
    Amini, M.
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (03) : 745 - 765
  • [8] Tail dependence comparison of survival Marshall-Olkin copulas
    Li, Haijun
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2008, 10 (01) : 39 - 54
  • [9] Marshall-Olkin type copulas generated by a global shock
    Durante, Fabrizio
    Girard, Stephane
    Mazo, Gildas
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 638 - 648
  • [10] Marshall-Olkin bivariate Weibull distributions and processes
    Jose, K. K.
    Ristic, Miroslav M.
    Joseph, Ancy
    [J]. STATISTICAL PAPERS, 2011, 52 (04) : 789 - 798