Bisector Energy and Few Distinct Distances

被引:8
|
作者
Lund, Ben [1 ]
Sheffer, Adam [2 ]
de Zeeuw, Frank [3 ]
机构
[1] Rutgers State Univ, New Brunswick, NJ 08901 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
Discrete geometry; Incidence geometry; Polynomial method; Distinct distances; Perpendicular bisectors; ERDOS; SETS;
D O I
10.1007/s00454-016-9783-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define the bisector energy E(P) of a set P in R-2 to be the number of quadruples (a, b, c, d) is an element of P-4 such that a, b determine the same perpendicular bisector as c, d. Equivalently, E(P) is the number of isosceles trapezoids determined by P. We prove that for any epsilon > 0, if an n-point set P has no M(n) points on a line or circle, then we have E(P) = O(M(n)(2/5) n(12/5+epsilon) + M(n)n(2)). We derive the lower bound E(P) = Omega(M(n)n(2)), matching our upper bound when M(n) is large. We use our upper bound on E(P) to obtain two rather different results: (i) If P determines O(n/root log n) distinct distances, then for any 0 < alpha <= 1/4, there exists a line or circle that contains at least na points of P, or there exist Omega(n(8/5-12 alpha/5-epsilon)) distinct lines that contain Omega(root log n) points of P. This result provides new information towards a conjecture of Erdos (Discrete Math 60:147-153, 1986) regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n) points of P, the number of distinct perpendicular bisectors determined by P is Omega(min{M(n)(-2/5)n(8/5-epsilon), M(n)(-1)n(2)}).
引用
收藏
页码:337 / 356
页数:20
相关论文
共 50 条
  • [21] Distinct distances in graph drawings
    Carmi, Paz
    Dujmovic, Vida
    Morin, Pat
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [22] DISTINCT DISTANCES IN THE COMPLEX PLANE
    Sheffer, Adam
    Zahl, Joshua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6691 - 6725
  • [23] Distinct distances on two lines
    Sharir, Micha
    Sheffer, Adam
    Solymosi, Jozsef
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1732 - 1736
  • [24] Distinct distances and arithmetic progressions
    Dumitrescu, Adrian
    DISCRETE APPLIED MATHEMATICS, 2019, 256 : 38 - 41
  • [25] Three distinct distances in the plane
    Harborth, H
    Piepmeyer, L
    GEOMETRIAE DEDICATA, 1996, 61 (03) : 315 - 327
  • [26] DISTINCT DISTANCES ON HYPERBOLIC SURFACES
    Meng, Xianchang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) : 3713 - 3731
  • [27] Distinct distances with lp metrics
    Matthews, Polly, Jr.
    AlQady, Moaaz
    Chabot, Riley
    Dudarov, William
    Ge, Linus
    Juvekar, Mandar
    Kundeti, Srikanth
    Kundu, Neloy
    Lu, Kevin
    Moreno, Yago
    Peng, Sibo
    Speas, Samuel
    Starzycka, Julia
    Steinthal, Henry
    Vitko, Anastasiia
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100
  • [28] POINT SETS WITH DISTINCT DISTANCES
    LEFMANN, H
    THIELE, T
    COMBINATORICA, 1995, 15 (03) : 379 - 408
  • [29] A note on the number of distinct distances
    Elekes G., Elekes G.
    Periodica Mathematica Hungarica, 1999, 38 (3) : 173 - 177
  • [30] TWO-DIMENSIONAL LATTICES WITH FEW DISTANCES
    Moree, Pieter
    Osburn, Robert
    ENSEIGNEMENT MATHEMATIQUE, 2006, 52 (3-4): : 361 - 380