A note on the number of distinct distances

被引:0
|
作者
Elekes G., Elekes G. [1 ]
机构
[1] EöTvöS LoráNd University, Budapest
关键词
Euclidean Space; Real Variable; Collinear Point; Distinct Distance;
D O I
10.1023/A:1004802524095
中图分类号
学科分类号
摘要
We refine a method introduced in [1] and [2] for studying the number of distinct values taken by certain polynomials of two real variables on Cartesian products. We apply it to prove a "gap theorem", improving a recent lower bound on the number of distinct distances between two collinear point sets in the Euclidean space. © Akadémiai Kiadó,.
引用
收藏
页码:173 / 177
页数:4
相关论文
共 50 条
  • [1] A note on distinct distances
    Raz, Orit E.
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 650 - 663
  • [2] A note on distinct distances in rectangular lattices
    Cilleruelo, Javier
    Sharir, Micha
    Sheffer, Adam
    DISCRETE MATHEMATICS, 2014, 336 : 37 - 40
  • [3] A NOTE ON THE DISTINCT DISTANCES PROBLEM IN THE HYPERBOLIC PLANE
    Lu, Zhipeng
    Meng, Xianchang
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (01) : 129 - 137
  • [4] NOTE ON THE NUMBER OF DISTINCT CHROMATICITIES
    MACADAM, DL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1947, 37 (04) : 308 - 309
  • [5] THE NUMBER OF DISTINCT DISTANCES FROM A VERTEX OF A CONVEX POLYGON
    Nivasch, Gabriel
    Pach, Janos
    Pinchasi, Rom
    Zerbib, Shira
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2013, 4 (01) : 1 - 12
  • [6] Counting the number of distinct distances of elements in valued field extensions
    Blaszczok, Anna
    Kuhlmann, Franz-Viktor
    JOURNAL OF ALGEBRA, 2018, 509 : 192 - 211
  • [7] On distinct sums and distinct distances
    Tardos, G
    ADVANCES IN MATHEMATICS, 2003, 180 (01) : 275 - 289
  • [8] Distinct distances in the plane
    Solymosi, J
    Tóth, CD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (04) : 629 - 634
  • [9] Distinct Distances in the Plane
    J. Solymosi
    Cs. D. Tóth
    Discrete & Computational Geometry, 2001, 25 : 629 - 634
  • [10] Note on Integral Distances
    József Solymosi
    Discrete & Computational Geometry, 2003, 30 : 337 - 342