Numerical analysis of dissipative system with noise model with the Atangana-Baleanu fractional derivative

被引:1
|
作者
Alkahtani, Badr Saad T. [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 1142, Riyadh 11989, Saudi Arabia
关键词
Non-local operators; Non-singular kernels; Dissipative system; Space-time noise; Numerical analysis; DIFFUSION;
D O I
10.1016/j.chaos.2018.09.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The model of dissipative system with noise has not been so far a center of interest of many researchers, while this model is very interesting physical problem that deserves to capture attentions. Not to mention that no study has been done for this model using the newly established concept of fractional differential operators based on non-singular kernels. In this paper, we aimed to provide an analysis mainly numerical analysis of the model with the non-local non-singular kernel differential operators. We made use of a recent powerful numerical scheme and provided some numerical simulations for different values of fractional order. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条
  • [31] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    [J]. RESULTS IN PHYSICS, 2021, 26
  • [32] Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative
    Vu, Ho
    Ghanbari, Behzad
    Ngo Van Hoa
    [J]. FUZZY SETS AND SYSTEMS, 2022, 429 : 1 - 27
  • [33] Real world applications of fractional models by Atangana-Baleanu fractional derivative
    Bas, Erdal
    Ozarslan, Ramazan
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 121 - 125
  • [34] Modelling immune systems based on Atangana-Baleanu fractional derivative
    Al-khedhairi, A.
    Elsadany, A. A.
    Elsonbaty, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 129 : 25 - 39
  • [35] Symmetry Analyses of Epidemiological Model for Monkeypox Virus with Atangana-Baleanu Fractional Derivative
    Gunasekar, Tharmalingam
    Manikandan, Shanmugam
    Govindan, Vediyappan
    Piriadarshani, D.
    Ahmad, Junaid
    Emam, Walid
    Al-Shbeil, Isra
    [J]. SYMMETRY-BASEL, 2023, 15 (08):
  • [36] A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana-Baleanu derivative
    Shatanawi, Wasfi
    Abdo, Mohammed S.
    Abdulwasaa, Mansour A.
    Shah, Kamal
    Panchal, Satish K.
    Kawale, Sunil, V
    Ghadle, Kirtiwant P.
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [37] Comparative Analysis of Advection-Dispersion Equations with Atangana-Baleanu Fractional Derivative
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ghani, Fazal
    Shah, Rasool
    Nonlaopon, Kamsing
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [38] Analysis of Silver Nanoparticles in Engine Oil: Atangana-Baleanu Fractional Model
    Murtaza, Saqib
    Ali, Farhad
    Sheikh, Nadeem Ahmad
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 2915 - 2932
  • [39] Numerical approximations of Atangana-Baleanu Caputo derivative and its application
    Yadav, Swati
    Pandey, Rajesh K.
    Shukla, Anil K.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 118 : 58 - 64
  • [40] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    D. G. Prakasha
    P. Veeresha
    Haci Mehmet Baskonus
    [J]. The European Physical Journal Plus, 134