A non-Archimedean inner product

被引:0
|
作者
Narici, L [1 ]
Beckenstein, E [1 ]
机构
[1] St Johns Univ, Staten Isl, NY 10301 USA
来源
关键词
non-Archimedean inner product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an inner product on a vector space X over a non-Archimedean valued field K. Our goal is to penetrate non-Archimedean normed spaces by means of Hilbert space type arguments. The basic idea in defining a "non-Archimedean inner product" is to substitute the Cauchy-Schwarz inequality for conjugate linearity in the second argument. Non-Arch imedean inner products induce norms in the usual way. We take 'x normal to y' to mean < y, x > = 0 [note the reversal of order] and show that x normal to y implies that x is orthogonal to y, in the usual non-Archimedean sense. The converse is generally false. For certain Banach spaces X, there is always an inner product that generates the original norm. We characterize them in Theorem 4.1. For normed subspaces X of (c(0) (T), parallel to(.)parallel to(infinity)) over a non-Archimedean valued field K with formally real residue class field, we define the "symmetric inner product" of x = (x(t)) and y = (y(t)) to be Sigma(t is an element of T)x(t)y(t). This one is attractive because < x, y > = < y, x > for all x and y. In this context, we develop a Gram-Schmidt procedure to convert linearly independent sequences into "orthonormal" ones, discuss conditions under which an orthonormal sequence can be extended to a basis, investigate "normal complements" and decompositions and, finally, the special properties of linear maps A : c(0) -> c(0) which preserve normality.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 50 条
  • [41] Non-Archimedean Whitney stratifications
    Halupczok, Immanuel
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 1304 - 1362
  • [42] Non-Archimedean methods in cosmology
    Mijajlovic, Zarko
    Pejovic, Nadezda
    FIFTY YEARS OF ROMANIAN ASTROPHYSICS, 2007, 895 : 317 - +
  • [43] A counterexample on non-archimedean regularity
    N. De Grande-De Kimpe
    C. Perez-Garcia
    Monatshefte für Mathematik, 2008, 153 : 105 - 113
  • [44] NON-ARCHIMEDEAN INTEGRATION THEORY
    VANROOIJ, AC
    SCHIKHOF, WH
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1969, 72 (02): : 190 - &
  • [45] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [46] Non-Archimedean fuzzy reasoning
    Schumann, Andrew
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 2 - 6
  • [47] Non-archimedean shift operators
    Anatoly N. Kochubei
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (3) : 260 - 264
  • [48] NON-ARCHIMEDEAN CHEBYSHEV CENTERS
    MARTINEZMAURICA, J
    PELLON, MT
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1987, 90 (04): : 417 - 421
  • [49] NON-ARCHIMEDEAN FUNCTION ALGEBRAS
    VANDERPUT, M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (01): : 60 - +
  • [50] NON-ARCHIMEDEAN MEASURE AND INTEGRATION
    SHILKRET.N
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 967 - &