A non-Archimedean inner product

被引:0
|
作者
Narici, L [1 ]
Beckenstein, E [1 ]
机构
[1] St Johns Univ, Staten Isl, NY 10301 USA
来源
关键词
non-Archimedean inner product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an inner product on a vector space X over a non-Archimedean valued field K. Our goal is to penetrate non-Archimedean normed spaces by means of Hilbert space type arguments. The basic idea in defining a "non-Archimedean inner product" is to substitute the Cauchy-Schwarz inequality for conjugate linearity in the second argument. Non-Arch imedean inner products induce norms in the usual way. We take 'x normal to y' to mean < y, x > = 0 [note the reversal of order] and show that x normal to y implies that x is orthogonal to y, in the usual non-Archimedean sense. The converse is generally false. For certain Banach spaces X, there is always an inner product that generates the original norm. We characterize them in Theorem 4.1. For normed subspaces X of (c(0) (T), parallel to(.)parallel to(infinity)) over a non-Archimedean valued field K with formally real residue class field, we define the "symmetric inner product" of x = (x(t)) and y = (y(t)) to be Sigma(t is an element of T)x(t)y(t). This one is attractive because < x, y > = < y, x > for all x and y. In this context, we develop a Gram-Schmidt procedure to convert linearly independent sequences into "orthonormal" ones, discuss conditions under which an orthonormal sequence can be extended to a basis, investigate "normal complements" and decompositions and, finally, the special properties of linear maps A : c(0) -> c(0) which preserve normality.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 50 条
  • [31] Definability in non-archimedean geometry
    Loeser, Francois
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 59 - 77
  • [32] Geometry and non-archimedean integrals
    Loeser, Francois
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 277 - 292
  • [33] Non-Archimedean population axiologies
    Baker, Calvin
    ECONOMICS AND PHILOSOPHY, 2024,
  • [34] Non-Archimedean Coulomb gases
    Zuniga-Galindo, W. A.
    Torba, Sergii M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [35] NOTE ON NON-ARCHIMEDEAN METRIZATION
    COHEN, LW
    GOFFMAN, C
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (03) : 281 - 281
  • [36] Trees and non-Archimedean topologies
    Christol, G
    TREES - WORKSHOP IN VERSAILLES, JUNE 14-16, 1995, 1996, 40 : 123 - 131
  • [37] NON-ARCHIMEDEAN WEIGHTED APPROXIMATION
    CARNEIRO, JPQ
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1978, 50 (01): : 1 - 34
  • [38] NON-ARCHIMEDEAN CORONA PROBLEM
    VANDERPUT, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1974, (39-4): : 287 - 317
  • [39] NON-ARCHIMEDEAN GELFAND THEORY
    SHILKRET, N
    PACIFIC JOURNAL OF MATHEMATICS, 1970, 32 (02) : 541 - &
  • [40] NON-ARCHIMEDEAN UNITARY OPERATORS
    Kochubei, Anatoly N.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (03): : 219 - 224