Plancherel-Rotach asymptotics for some q-orthogonal polynomials with complex scalings

被引:4
|
作者
Zhang, Ruiming [1 ]
机构
[1] Guangxi Normal Univ, Sch Mat, Guilin City 541004, Guangxi, Peoples R China
关键词
q-orthogonal polynomials; Ramanujan function; Stieltjes-Wigert polynomials; q-Laguerre orthogonal polynomials; Ismail-Masson orthogonal polynomials; Plancherel-Rotach asymptotics; theta functions; complex scaling; random matrix; algebraic numbers; Liouville numbers;
D O I
10.1016/j.aim.2008.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the Plancherel-Rotach type asymptotics for Stieltjes-Wigert, q-Laguerre and Ismail-Masson orthogonal polynomials with complex scalings. The main terms of the asymptotics for Stieltjes-Wigert and q-Lagueffe polynomials (Ismail-Masson polynomials) contain Rarnanujan function A(q) (Z) for scaling parameters above the vertical line R(s) = 2 (R(w) = 1/2); the main terms of the asymptotics involve theta function for scaling parameters in the vertical strip 0 < R(s) < 2 (0 < R(w) < 1/2). When scaling parameters in the vertical strips, the number theoretical properties of scaling parameters completely determine the orders of the error terms. These asymptotic formulas may provide some insights to new random matrix models and also add a new link between special functions and number theory. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1051 / 1080
页数:30
相关论文
共 50 条