Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev orthogonal polynomials

被引:9
|
作者
Area, I
Godoy, E
Marcellán, F
Moreno-Balcázar, JJ
机构
[1] Univ Almeria, Dept Estad & Matemat Aplicada, Almeria 04120, Spain
[2] Univ Vigo, Escuela Tecn Super Ingn Ind & Minas, Dept Matemat Aplicada, Vigo 36200, Spain
[3] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Madrid 28911, Spain
[4] Univ Granada, Inst Carlos & Fis Teor & Computac, Granada, Spain
关键词
Sobolev orthogonal polynomials; Meixner polynomials; scaled polynomials; asymptotics; Plancherel-Rotach asymptotics;
D O I
10.1016/S0377-0427(99)00281-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the analytic properties of the monic Meixner-Sobolev polynomials {Q(n)} orthogonal with respect to the inner product involving differences [GRAPHICS] where lambda greater than or equal to 0, Delta is the forward difference operator (Delta f(x) = f(x + 1) - f(x)) and (gamma)(n) denotes the Pochhammer symbol. Relative asymptotics for Meixner-Sobolev polynomials with respect to Meixner polynomials is obtained. This relative asymptotics is also given for the scaled polynomials. Moreover, a zero distribution for the scaled Meixner-Sobolev polynomials and Plancherel-Rotach asymptotics for {Q(n)} are deduced. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条