Plancherel-Rotach asymptotics for some q-orthogonal polynomials with complex scalings

被引:4
|
作者
Zhang, Ruiming [1 ]
机构
[1] Guangxi Normal Univ, Sch Mat, Guilin City 541004, Guangxi, Peoples R China
关键词
q-orthogonal polynomials; Ramanujan function; Stieltjes-Wigert polynomials; q-Laguerre orthogonal polynomials; Ismail-Masson orthogonal polynomials; Plancherel-Rotach asymptotics; theta functions; complex scaling; random matrix; algebraic numbers; Liouville numbers;
D O I
10.1016/j.aim.2008.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study the Plancherel-Rotach type asymptotics for Stieltjes-Wigert, q-Laguerre and Ismail-Masson orthogonal polynomials with complex scalings. The main terms of the asymptotics for Stieltjes-Wigert and q-Lagueffe polynomials (Ismail-Masson polynomials) contain Rarnanujan function A(q) (Z) for scaling parameters above the vertical line R(s) = 2 (R(w) = 1/2); the main terms of the asymptotics involve theta function for scaling parameters in the vertical strip 0 < R(s) < 2 (0 < R(w) < 1/2). When scaling parameters in the vertical strips, the number theoretical properties of scaling parameters completely determine the orders of the error terms. These asymptotic formulas may provide some insights to new random matrix models and also add a new link between special functions and number theory. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1051 / 1080
页数:30
相关论文
共 50 条
  • [41] A fractional q-derivative operator and fractional extensions of some q-orthogonal polynomials
    Sadjang, P. Njionou
    Mboutngam, S.
    [J]. RAMANUJAN JOURNAL, 2021, 54 (01): : 29 - 41
  • [42] Plancherel–Rotach Asymptotic Expansion for Some Polynomials from Indeterminate Moment Problems
    Dan Dai
    Mourad E. H. Ismail
    Xiang-Sheng Wang
    [J]. Constructive Approximation, 2014, 40 : 61 - 104
  • [43] MORE ON THE Q-OSCILLATOR ALGEBRA AND Q-ORTHOGONAL POLYNOMIALS
    FLOREANINI, R
    LETOURNEUX, J
    VINET, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10): : L287 - L293
  • [44] On q-orthogonal polynomials over a collection of complex origin intervals related to little q-Jacobi polynomials
    Predrag M. Rajković
    Sladjana D. Marinković
    Miomir S. Stanković
    [J]. The Ramanujan Journal, 2006, 12 : 245 - 255
  • [45] On q-orthogonal polynomials over a collection of complex origin intervals related to little q-Jacobi polynomials
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    Stankovic, Miomir S.
    [J]. RAMANUJAN JOURNAL, 2006, 12 (02): : 245 - 255
  • [46] Difference equations and quantized discriminants for q-orthogonal polynomials
    Ismail, MEH
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (03) : 562 - 589
  • [47] On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials
    Atakishiyev, NM
    Klimyk, AU
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 246 - 257
  • [48] q-integral and moment representations for q-orthogonal polynomials
    Ismail, MEH
    Stanton, D
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (04): : 709 - 735
  • [49] Geometric applications of bivariate q-bernstein and q-orthogonal polynomials
    Simeonov, Plamen
    Zafiris, Vasilis
    [J]. RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 25 - +
  • [50] On a class of q-orthogonal polynomials and the q-Riemann-Hilbert problem
    Joshi, Nalini
    Lasic Latimer, Tomas
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2254):