Heat capacities and absolute entropies of UTi2O6 and CeTi2O6

被引:12
|
作者
Donaldson, MH
Stevens, R
Lang, BE
Boerio-Goates, J
Woodfield, BF [1 ]
Putnam, RL
Navrotsky, A
机构
[1] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84606 USA
[2] Univ Calif Davis, Dept Chem Engn & Mat Sci, Thermochem Facil, Davis, CA 95616 USA
关键词
brannerite; CeTi2O6; enthalpy; entropy; heat capacity; thermodynamic functions; thermodynamics; UTi2O6;
D O I
10.1007/s10973-005-0833-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
As part of a larger study of the physical properties of potential ceramic hosts for nuclear wastes, we report the molar heat capacity of brannerite (UTi2O6) and its cerium analog (CeTi2O6) from 10 to 400 K using an adiabatic calorimeter. At 298.15 K the standard molar heat capacities are (179.46 +/- 0.18) J K-1 mol(-1) for UTi2O6 and (172.78 +/- 0.17) J K-1 mol(-1) for CeTi2O6. Entropies were calculated from smooth fits of the experimental data and were found to be (175.56 +/- 0.35) J K-1 mol(-1) and (171.63 +/- 0.34) J K-1 mol(-1) for UTi2O6 and CeTi2O6, respectively. Using these entropies and enthalpy of formation data reported in the literature, Gibb's free energies of formation from the elements and constituent oxides were calculated. Standard free energies of formation from the elements are (-2814.7 +/- 5.6) kJ mol(-1) for UTi2O6 and (-2786.3 +/- 5.6) kJ mol(-1) for CeTi2O6. The free energy of formation from the oxides at T=298.15 K are (-5.31 +/- 0.01) kJ mol(-1) and (15.88 +/- 0.03) kJ mol(-1) for UTi2O6 and CeTi2O6, respectively.
引用
收藏
页码:617 / 625
页数:9
相关论文
共 50 条
  • [41] Low-temperature heat capacities of [Er2(L-Glu)2(H2O)6](ClO4)4•6H2O(S)
    Di, You-Ying
    Zhang, Jian
    Tan, Zhi-Cheng
    THERMOCHIMICA ACTA, 2007, 463 (1-2) : 10 - 12
  • [42] The BaS2O6-Na2S2O6-H2O system
    De Baat, WC
    RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, 1923, 42 : 643 - 646
  • [43] FLUX GROWTH OF LIFESI2O6,LICRSI2O6, AND LIFEGE2O6.
    BEHRUZI, M
    BANERJEAAPPEL, E
    HAHN, T
    SCHERBERICH, FD
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1984, 167 (3-4): : 212 - 214
  • [44] STRUCTURES, POLYMORPHISM AND MIXED-CRYSTAL FORMATION IN THE LISCSI2O6-LIINSI2O6-LISCGE2O6-LIINGE2O6 SYSTEM
    GROTEPASS, M
    BEHRUZI, M
    HAHN, T
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1983, 162 (1-4): : 90 - 92
  • [45] Coordination of vanadium(5+) in solid solutions MgV2O6-CaV2O6 and ZnV2O6-CaV2O6
    Hansen, S
    Nilsson, J
    ACTA CHEMICA SCANDINAVICA, 1996, 50 (06): : 512 - 515
  • [46] SYNTHESIS AND PROPERTIES OF O-CONTAINING CHEVREL PHASES, COXMO6S6O2, NIXMO6S6O2, CUXMO6S6O2, AND PBXMO6S6O2
    UMARJI, AM
    RAO, GVS
    SANKARANARAYANAN, V
    RANGARAJAN, G
    SRINIVASAN, R
    MATERIALS RESEARCH BULLETIN, 1980, 15 (07) : 1025 - 1031
  • [47] Gaseous heat capacities I The method and the heat capacities of C2H6 and C2D6
    Kistiakowsky, GB
    Rice, WW
    JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (05): : 281 - 288
  • [48] THE HEAT-CAPACITIES OF THE TANTALATES MTA2O6, M = MG, FE, CO, NI
    WHITE, MA
    NESHVAD, G
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1991, 23 (05): : 455 - 460
  • [49] ABSOLUTE LINESTRENGTHS IN THE H2O2 NU-6 BAND
    MAY, RD
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1991, 45 (05): : 267 - 272
  • [50] FERROELECTRIC PROPERTIES OF SOLID SOLUTIONS IN THE SYSTEM PBNB2O6-BANB2O6-SRNB2O6
    SMOLENSKII, GA
    ISUPOV, VA
    AGRANOVSKAYA, AI
    SOVIET PHYSICS-SOLID STATE, 1959, 1 (03): : 400 - 405