Gradient Matching Federated Domain Adaptation for Brain Image Classification

被引:24
|
作者
Zeng, Ling-Li [1 ]
Fan, Zhipeng [1 ]
Su, Jianpo [1 ]
Gan, Min [1 ]
Peng, Limin [1 ]
Shen, Hui [1 ]
Hu, Dewen [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Diagnostic classification; domain adaptation (DA); federated learning; functional MRI (fMRI); major depressive disorder (MDD); schizophrenia (SCZ); MEMRISTIVE NEURAL-NETWORKS; SYSTEMS; STABILIZATION; SECURITY;
D O I
10.1109/TNNLS.2022.3223144
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning has shown its unique advantages in many different tasks, including brain image analysis. It provides a new way to train deep learning models while protecting the privacy of medical image data from multiple sites. However, previous studies suggest that domain shift across different sites may influence the performance of federated models. As a solution, we propose a gradient matching federated domain adaptation (GM-FedDA) method for brain image classification, aiming to reduce domain discrepancy with the assistance of a public image dataset and train robust local federated models for target sites. It mainly includes two stages: 1) pretraining stage; we propose a one-common-source adversarial domain adaptation (OCS-ADA) strategy, i.e., adopting ADA with gradient matching loss to pretrain encoders for reducing domain shift at each target site (private data) with the assistance of a common source domain (public data) and 2) fine-tuning stage; we develop a gradient matching federated (GM-Fed) fine-tuning method for updating local federated models pretrained with the OCS-ADA strategy, i.e., pushing the optimization direction of a local federated model toward its specific local minimum by minimizing gradient matching loss between sites. Using fully connected networks as local models, we validate our method with the diagnostic classification tasks of schizophrenia and major depressive disorder based on multisite resting-state functional MRI (fMRI), respectively. Results show that the proposed GM-FedDA method outperforms other commonly used methods, suggesting the potential of our method in brain imaging analysis and other fields, which need to utilize multisite data while preserving data privacy.
引用
收藏
页码:7405 / 7419
页数:15
相关论文
共 50 条
  • [21] Reliable Domain Adaptation with Classifiers Competition for Image Classification
    Fu, Jingru
    Zhang, Lei
    IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67 (11): : 2802 - 2806
  • [22] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    Multimedia Tools and Applications, 2024, 83 (08) : 23311 - 23331
  • [23] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [24] A DISCRIMINATIVE DOMAIN ADAPTATION MODEL FOR CROSS-DOMAIN IMAGE CLASSIFICATION
    Chou, Yen-Cheng
    Wei, Chia-Po
    Wang, Yu-Chiang Frank
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3083 - 3087
  • [25] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [26] A Novel Cluster Matching-Based Improved Kernel Fisher Criterion for Image Classification in Unsupervised Domain Adaptation
    Khan, Siraj
    Asim, Muhammad
    Chelloug, Samia Allaoua
    Abdelrahiem, Basma
    Khan, Salabat
    Musyafa, Ahmad
    SYMMETRY-BASEL, 2023, 15 (06):
  • [27] Unsupervised SAR and Optical Image Matching Using Siamese Domain Adaptation
    Zhang, Zhaoxiang
    Xu, Yuelei
    Cui, Qi
    Zhou, Qing
    Ma, Linhua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Federated learning for secure medical MRI brain tumor image classification
    Appasami, G.
    Savarimuthu, Nickolas
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [29] A Biclassifier Network With Intermediate Domain for Unsupervised Domain Adaptation PolSAR Image Classification
    Wu, Zhenhua
    Zhu, Dayi
    Cao, Yice
    Zhang, Man
    Yang, Lixia
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [30] Domain Adaptation via Feature Disentanglement for cross-domain image classification
    Wu, Zhi-Ze
    Du, Chang-Jiang
    Wang, Xin-Qi
    Zou, Le
    Cheng, Fan
    Li, Teng
    Nian, Fu-Dong
    Weise, Thomas
    Wang, Xiao-Feng
    APPLIED SOFT COMPUTING, 2025, 172