Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification

被引:0
|
作者
Li, Xiangning [1 ]
Pan, Chen [1 ]
He, Lingmin [1 ]
Li, Xinyu [1 ]
机构
[1] China JiLiang Univ, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Domain adaptation; Medical image classification; Multi-source; Domain hybrid; Adversarial network; NETWORKS;
D O I
10.1007/s11042-023-16400-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation (UDA) methods have made remarkable progress in histopathological image analysis and various cancer diagnosis domains. However, most cur-rent research focuses on transfer between single-source domains. The distribution of features between different cancer types is far away, and a well-trained model in one field may not be able to generalize well to data in other fields. To address the domain shift problem, this paper proposes a multi-source unsupervised domain adaptation method with domain mixing bridging. Using multiple source and target domains, feature representations of all domains are extracted, and latent relationships are captured. Afterward, the complementary information of the hybrid bridging intermediate domain is integrated to align the feature distribution. Addi-tionally, we introduce a domain adversarial adaptation module to generate domain invariant features. We experimented on three different cancer pathology image datasets and achieved an average accuracy of 92.94% classification performance. It is proved that compared with the existing deep transfer learning technology, the method in this paper has a better effect. Code will be available at: https://github.com/Ww994/MHDAN.
引用
收藏
页码:23311 / 23331
页数:21
相关论文
共 50 条
  • [1] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    [J]. Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [2] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    [J]. Multimedia Tools and Applications, 2024, 83 (08) : 23311 - 23331
  • [3] An Unsupervised Domain Adaptation Approach For Cross-Domain Visual Classification
    Hou, Cheng-An
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    [J]. 2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [4] Generalized Zero-Shot Domain Adaptation for Unsupervised Cross-Domain PolSAR Image Classification
    Gui, Rong
    Xu, Xin
    Yang, Rui
    Deng, Kailiang
    Hu, Jun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 270 - 283
  • [5] Cross-domain Network Traffic Classification Using Unsupervised Domain Adaptation
    Li, Dongpu
    Yuan, Qifeng
    Li, Tan
    Chen, Shuangwu
    Yang, Jian
    [J]. 2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 245 - +
  • [6] A DISCRIMINATIVE DOMAIN ADAPTATION MODEL FOR CROSS-DOMAIN IMAGE CLASSIFICATION
    Chou, Yen-Cheng
    Wei, Chia-Po
    Wang, Yu-Chiang Frank
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3083 - 3087
  • [7] Joint cross-domain classification and subspace learning for unsupervised adaptation
    Fernando, Basura
    Tommasi, Tatiana
    Tuytelaars, Tinne
    [J]. PATTERN RECOGNITION LETTERS, 2015, 65 : 60 - 66
  • [8] Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data
    Hsu, Tzu-Ming Harry
    Chen, Wei-Yu
    Hou, Cheng-An
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4121 - 4129
  • [9] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    [J]. Applied Intelligence, 2022, 52 : 17326 - 17340
  • [10] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448