Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification

被引:1
|
作者
Li, Xiangning [1 ]
Pan, Chen [1 ]
He, Lingmin [1 ]
Li, Xinyu [1 ]
机构
[1] China JiLiang Univ, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Domain adaptation; Medical image classification; Multi-source; Domain hybrid; Adversarial network; NETWORKS;
D O I
10.1007/s11042-023-16400-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation (UDA) methods have made remarkable progress in histopathological image analysis and various cancer diagnosis domains. However, most cur-rent research focuses on transfer between single-source domains. The distribution of features between different cancer types is far away, and a well-trained model in one field may not be able to generalize well to data in other fields. To address the domain shift problem, this paper proposes a multi-source unsupervised domain adaptation method with domain mixing bridging. Using multiple source and target domains, feature representations of all domains are extracted, and latent relationships are captured. Afterward, the complementary information of the hybrid bridging intermediate domain is integrated to align the feature distribution. Addi-tionally, we introduce a domain adversarial adaptation module to generate domain invariant features. We experimented on three different cancer pathology image datasets and achieved an average accuracy of 92.94% classification performance. It is proved that compared with the existing deep transfer learning technology, the method in this paper has a better effect. Code will be available at: https://github.com/Ww994/MHDAN.
引用
下载
收藏
页码:23311 / 23331
页数:21
相关论文
共 50 条
  • [31] DART: Domain-Adversarial Residual-Transfer networks for unsupervised cross-domain image classification
    Fang, Xianghong
    Bai, Haoli
    Guo, Ziyi
    Shen, Bin
    Hoi, Steven
    Xu, Zenglin
    NEURAL NETWORKS, 2020, 127 (127) : 182 - 192
  • [32] Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
    Gao, Huan
    Guo, Jichang
    Wang, Guoli
    Zhang, Qian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9903 - 9913
  • [33] Unsupervised Adversarial Domain Adaptation for Cross-Domain Face Presentation Attack Detection
    Wang, Guoqing
    Han, Hu
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 56 - 69
  • [34] Unsupervised domain adaptation by cross-domain consistency learning for CT body composition
    Ali, Shahzad
    Lee, Yu Rim
    Park, Soo Young
    Tak, Won Young
    Jung, Soon Ki
    Machine Vision and Applications, 2025, 36 (01)
  • [35] Unsupervised domain adaptation for histopathology image segmentation with incomplete labels
    Zhou H.
    Wang Y.
    Zhang B.
    Zhou C.
    Vonsky M.S.
    Mitrofanova L.B.
    Zou D.
    Li Q.
    Computers in Biology and Medicine, 2024, 171
  • [36] DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation
    Lee, Seunghun
    Cho, Sunghyun
    Im, Sunghoon
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15247 - 15256
  • [37] Domain adaptation with a shrinkable discrepancy strategy for cross-domain sentiment classification
    Fu, Yanping
    Liu, Yun
    Neurocomputing, 2022, 494 : 56 - 66
  • [38] T-LBERT with Domain Adaptation for Cross-Domain Sentiment Classification
    Cao, Hongye
    Wei, Qianru
    Zheng, Jiangbin
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (01) : 141 - 150
  • [39] Joint Domain Matching and Classification for cross-domain adaptation via ELM
    Chen, Chao
    Jiang, Buyuan
    Cheng, Zhaowei
    Jin, Xinyu
    NEUROCOMPUTING, 2019, 349 : 314 - 325
  • [40] Correspondence-Free Domain Alignment for Unsupervised Cross-Domain Image Retrieval
    Wang, Xu
    Peng, Dezhong
    Yan, Ming
    Hu, Peng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 10200 - 10208