The braided Thompson's groups are of type F∞

被引:27
|
作者
Bux, Kai-Uwe [1 ]
Fluch, Martin G. [1 ]
Marschler, Marco [1 ]
Witzel, Stefan [2 ]
Zaremsky, Matthew C. B. [3 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
FINITENESS PROPERTIES; CHESSBOARD COMPLEXES; HIGHER GENERATION; SUBGROUPS; ALGEBRA; STRAND;
D O I
10.1515/crelle-2014-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the braided Thompson's groups V-br and F-br are of type F-infinity, confirming a conjecture by John Meier. The proof involves showing that matching complexes of arcs on surfaces are highly connected. In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.
引用
收藏
页码:59 / 101
页数:43
相关论文
共 50 条
  • [41] Geometric presentations for Thompson's groups
    Dehornoy, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 203 (1-3) : 1 - 44
  • [42] Divergence function of the braided Thompson group
    Kodama, Yuya
    KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (02) : 435 - 470
  • [43] EXAMPLES OF BRAIDED GROUPS AND BRAIDED MATRICES
    MAJID, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3246 - 3253
  • [44] BRAIDED GROUPS
    MAJID, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 86 (02) : 187 - 221
  • [45] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [46] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [47] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [48] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134
  • [49] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [50] Thompson's group F is not Kahler
    Napier, T
    Ramachandran, M
    TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 197 - +