Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose

被引:45
|
作者
Oh, Eun Joong [1 ]
Jin, Yong-Su [2 ,3 ,4 ]
机构
[1] Univ Colorado, RASEI, 4001 Discovery Dr, Boulder, CO 80303 USA
[2] Dept Food Sci & Human Nutr, 905 S Goodwin Ave, Urbana, IL 61801 USA
[3] 1105 Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA
[4] Univ Illinois, DOE Ctr Adv Bioenergy & Bioprod Innovat, 1206 W Gregory Dr, Urbana, IL 61801 USA
关键词
Saccharomyces cerevisiae; lignocellulosic biomass; biofuel; YIELD ETHANOL-PRODUCTION; ACETIC-ACID TOLERANCE; CELL-SURFACE; SIMULTANEOUS SACCHARIFICATION; CELLOBIOSE FERMENTATION; CO-FERMENTATION; YEAST-STRAIN; CRYSTALLINE CELLULOSE; AMORPHOUS CELLULOSE; BETA-GLUCOSIDASES;
D O I
10.1093/femsyr/foz089
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Systematic engineering of Saccharomyces cerevisiae for efficient synthesis of hemoglobins and myoglobins
    Xue, Jike
    Zhou, Jingwen
    Li, Jianghua
    Du, Guocheng
    Chen, Jian
    Wang, Miao
    Zhao, Xinrui
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [22] Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin
    Sun, Lei
    Liu, Guiyou
    Li, Ya
    Jiang, Dayong
    Guo, Wenfeng
    Xu, Hui
    Zhan, Ruoting
    METABOLIC ENGINEERING, 2019, 54 : 212 - 221
  • [23] Overproduction of Cucurbitadienol through Modular Metabolic Engineering and Fermentation Optimization in Saccharomyces cerevisiae
    Yin, Xinran
    Zhang, Yunliang
    Wei, Wenqian
    Zhao, Xingying
    Xu, Sha
    Gao, Song
    Zhou, Jingwen
    Journal of Agricultural and Food Chemistry, 2024,
  • [24] Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation
    Zhenyu Wang
    Weikai Xu
    Yixuan Gao
    Mingwei Zha
    Di Zhang
    Xiwei Peng
    Huifang Zhang
    Cheng Wang
    Chenchen Xu
    Tingqiu Zhou
    Dong Liu
    Huanqing Niu
    Qingguo Liu
    Yong Chen
    Chenjie Zhu
    Ting Guo
    Hanjie Ying
    Biotechnology for Biofuels and Bioproducts, 16
  • [25] Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae
    Hara, Kiyotaka Y.
    Aoki, Naoko
    Kobayashi, Jyumpei
    Kiriyama, Kentaro
    Nishida, Keiji
    Araki, Michihiro
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) : 9771 - 9778
  • [26] Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae
    Kiyotaka Y. Hara
    Naoko Aoki
    Jyumpei Kobayashi
    Kentaro Kiriyama
    Keiji Nishida
    Michihiro Araki
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2015, 99 : 9771 - 9778
  • [27] Screening and Engineering Yeast Transporters to Improve Cellobiose Fermentation by Recombinant Saccharomyces cerevisiae
    Kretzer, Leonardo G.
    Knychala, Marilia M.
    da Silva, Lucca C.
    da Fontoura, Isadora C. C.
    Leandro, Maria Jose
    Fonseca, Cesar
    Verstrepen, Kevin J.
    Stambuk, Boris U.
    FERMENTATION-BASEL, 2024, 10 (09):
  • [28] Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation
    Wang, Zhenyu
    Xu, Weikai
    Gao, Yixuan
    Zha, Mingwei
    Zhang, Di
    Peng, Xiwei
    Zhang, Huifang
    Wang, Cheng
    Xu, Chenchen
    Zhou, Tingqiu
    Liu, Dong
    Niu, Huanqing
    Liu, Qingguo
    Chen, Yong
    Zhu, Chenjie
    Guo, Ting
    Ying, Hanjie
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [29] Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    Hector, Ronald E.
    Dien, Bruce S.
    Cotta, Michael A.
    Qureshi, Nasib
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (09) : 1193 - 1202
  • [30] Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation
    Romani, Aloia
    Pereira, Filipa
    Johansson, Bjoern
    Domingues, Lucilia
    BIORESOURCE TECHNOLOGY, 2015, 179 : 150 - 158