Restricted Diffusion in Cellular Media: (1+1)-Dimensional Model

被引:5
|
作者
Huang, Huaxiong [1 ,4 ]
Wylie, Jonathan J. [2 ,4 ]
Miura, Robert M. [3 ,4 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[4] New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Restricted diffusion in cellular media with permeable membranes; Nuclear magnetic resonance imaging; CORTICAL SPREADING DEPRESSION; PERMEABLE MEMBRANES; TRAVELING-WAVES; NMR; BARRIERS; GRADIENT; SYSTEMS;
D O I
10.1007/s11538-010-9589-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the diffusion of molecules in a one-dimensional medium consisting of a large number of cells separated from the extra-cellular space by permeable membranes. The extra-cellular space is completely connected and allows unrestricted diffusion of the molecules. Furthermore, the molecules can diffuse within a given cell, i.e., the intra-cellular space; however, direct diffusion from one cell to another cell cannot occur. There is a movement of molecules across the permeable membranes between the intra- and extra-cellular spaces. Molecules from one cell can cross the permeable membrane into the extra-cellular space, then diffuse through the extra-cellular space, and eventually enter the intra-cellular space of a second cell. Here, we develop a simple set of model equations to describe this phenomenon and obtain the solutions using an eigenfunction expansion. We show that the solutions obtained using this method are particularly convenient for interpreting data from experiments that use techniques from nuclear magnetic resonance imaging.
引用
收藏
页码:1682 / 1694
页数:13
相关论文
共 50 条
  • [21] INTERACTION OF INSTANTONS WITH A FERMION FIELD IN A (1+1)-DIMENSIONAL MODEL
    HORTACSU, M
    PHYSICAL REVIEW D, 1979, 20 (02) : 496 - 500
  • [22] Anomalous diffusion and factor ordering in (1+1)-dimensional Lorentzian quantum gravity
    Sanderson, E.
    Maitra, R. L.
    Liberatore, A. J.
    NUCLEAR PHYSICS B, 2025, 1010
  • [23] CHERN-SIMONS NUMBER DIFFUSION IN (1+1)-DIMENSIONAL HIGGS THEORY
    DEFORCRAND, P
    KRASNITZ, A
    POTTING, R
    PHYSICAL REVIEW D, 1994, 50 (10) : R6054 - R6057
  • [24] Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity
    Kartashov, YV
    Aleshkevich, VA
    Vysloukh, VA
    Egorov, AA
    Zelenina, AS
    PHYSICAL REVIEW E, 2003, 67 (03): : 1 - 036613
  • [25] Impact of boundary on the surface soliton in (1+1)-dimensional nonlocal nonlinear media
    Zhao Can
    Ma Xue-Kai
    Wang Jing
    Lu Da-Quan
    Hu Wei
    ACTA PHYSICA SINICA, 2013, 62 (09)
  • [26] HAMILTONIAN MONTE-CARLO STUDY OF (1+1)-DIMENSIONAL MODELS WITH RESTRICTED SUPERSYMMETRY ON THE LATTICE
    RANFT, J
    SCHILLER, A
    PHYSICS LETTERS B, 1984, 138 (1-3) : 166 - 170
  • [27] A SOLVABLE (1+1)-DIMENSIONAL GAUGE-MODEL AND THE CORRESPONDING LATTICE MODEL
    BO, Z
    GUO, SH
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1991, 17 (05) : 565 - 571
  • [28] Coupled-channel scattering in 1+1 dimensional lattice model
    Guo, Peng
    PHYSICAL REVIEW D, 2013, 88 (01):
  • [29] THE SUPERCONFORMAL ANOMALY IN THE 1+1 DIMENSIONAL WESS-ZUMINO MODEL
    KAMATH, SG
    PRAMANA, 1988, 30 (04) : 299 - 304
  • [30] Gravitational form factors of a kink in 1+1 dimensional φ4 model
    Ito, Hiroaki
    Kitazawa, Masakiyo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)