Cycle-dependent Microstructural Changes of Silicon-Carbon Composite Anodes for Lithium-Ion Batteries

被引:5
|
作者
Sohn, Myungbeom [1 ]
Lee, Dong Geun [1 ]
Chung, Dong Jae [1 ]
Kim, Ayoung [1 ]
Kim, Hansu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
来源
关键词
Lithium-ion battery; Si-based anode; Si-C composite; Graphite-blended electrode; Solid electrolyte interphase accumulation; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; NANOCOMPOSITE; DEGRADATION; MECHANISMS; LITHIATION; STABILITY; EVOLUTION; POROSITY; FAILURE;
D O I
10.1002/bkcs.11660
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Si-based high capacity anodes are of the utmost importance for advancing energy density of lithium-ion batteries. The major shortcoming of Si-based anodes, however, is their poor cycle performance. To solve this problem, it is essential to understand the failure mechanisms of both the Si-based anodes. In this work, we observe the cycle-dependent microstructural evolution of a Si-C composite/graphite-blended electrode using ex situ scanning electron microscopy observations and corresponding cross-sectional elemental mapping images. We reveal that the Si particles become finer and spread through the whole electrode and act as an electrochemically active site for electrolyte decomposition reactions. This forms a solid electrolyte interphase layer on the surface of the Si particles during cycling. The resulting electrolyte decomposition products surrounding the Si particles are finely spread throughout the whole blended electrode. This cycle-dependent microstructural change is one of the main reasons for the poor capacity retention of the blended electrode.
引用
下载
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [21] Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries
    Liu, Xuyan
    Zhu, Xinjie
    Pan, Deng
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):
  • [22] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [23] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [24] Stable silicon/carbon anodes for lithium-ion batteries prepared by emulsiontemplating
    Zhang, Yuzi
    Lucht, Brett
    Bose, Arijit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [25] Cycling-Induced Microstructural Changes in Alloy Anodes for Lithium-Ion Batteries
    Adams, Jacob N.
    Nelson, George J.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2021, 18 (04)
  • [26] Investigation of porous silicon/carbon composite as anodes for lithium ion batteries
    Huang, Yan-Hua
    Han, Xiang
    Chen, Hui-Xin
    Chen, Song-Yan
    Yang, Yong
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30 (04): : 351 - 356
  • [27] Investigation of Porous Silicon/Carbon Composite as Anodes for Lithium Ion Batteries
    Huang Yan-Hua
    Han Xiang
    Chen Hui-Xin
    Chen Song-Yan
    Yang Yong
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (04) : 351 - 356
  • [28] Interdispersed silicon-carbon nanocomposites and their application as anode materials for lithium-ion batteries
    Yang, Zichao
    Guo, Juchen
    Xu, Shaomao
    Yu, Yingchao
    Abruna, Hector D.
    Archer, Lynden A.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 28 : 40 - 43
  • [29] Improved cycling capacity of silicon-carbon nanocomposite anode for lithium-ion batteries
    Chen, Shuru
    Yi, Ran
    Xu, Tianren
    Gordin, Mikhail
    Howlett, Giles
    Wang, Donghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [30] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38