Open-Shell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy

被引:97
|
作者
Wang, Han [1 ]
Guo, Jinxiao [2 ]
Lin, Wilson [3 ,4 ]
Fu, Zi [1 ]
Ji, Xiuru [1 ]
Yu, Bo [3 ,4 ]
Lu, Min [1 ]
Cui, Wenguo [1 ]
Deng, Lianfu [1 ]
Engle, Jonathan W. [3 ,4 ]
Wu, Zhiyuan [5 ]
Cai, Weibo [3 ,4 ]
Ni, Dalong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med,Ruijin Hosp, Dept Orthopaed,Shanghai Inst Traumatol & Orthopae, Shanghai Key Lab Prevent & Treatment Bone & Joint, Shanghai 200025, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Orthopaed, Shanghai 200233, Peoples R China
[3] Univ Wisconsin, Dept Radiol, Madison, WI 53705 USA
[4] Univ Wisconsin, Dept Med Phys, Madison, WI 53705 USA
[5] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Intervent Radiol, Shanghai 200025, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
glutathione response; nanomedicine; open shell; positron emission tomography imaging; sonodynamic therapy;
D O I
10.1002/adma.202110283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deleterious effects to normal tissues and short biological half-life of sonosensitizers limit the applications of sonodynamic therapy (SDT). Herein, a new sonosensitizer (Cu(II)NS) is synthesized that consists of porphyrins, chelated Cu2+, and poly(ethylene glycol) (PEG) to overcome the challenges of SDT. As Cu2+ contains 27 electrons, Cu(II)NS has an unpaired electron (open shell), resulting in a doublet ground state and little sonosensitivity. Overexpressed glutathione in the tumor can reduce Cu2+ to generate Cu(I)NS, leading to a singlet ground state and recuperative sonosensitivity. Additionally, PEG endows Cu(II)NS with increased blood biological half-life and enhanced tumor accumulation, further increasing the effect of SDT. Through regulating the valence state of Cu, cancer SDT with enhanced therapeutic index is achieved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Modeling of open-shell species.
    Cundari, TR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U433 - U433
  • [42] ORBITAL ENERGIES IN OPEN-SHELL SYSTEMS
    SAUER, J
    JUNG, C
    JAFFE, HH
    SINGERMAN, J
    JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (01): : 495 - 496
  • [43] THE QUANTUM CHEMISTRY OF OPEN-SHELL SPECIES
    Krylov, Anna I.
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 30, 2017, 30 : 151 - 224
  • [44] A Classification of Open-Shell States of Molecules
    Wasilewski, J.
    International Journal of Quantum Chemistry, 57 (04):
  • [45] An Open-Shell Functionalization of Inorganic Benzene
    Grenda, Sabrina
    Claiser, Nicolas
    Barbon, Antonio
    Guegan, Frederic
    Toury, Berangere
    Luneau, Dominique
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (48) : 32906 - 32911
  • [46] Doublet Open-Shell Graphene Fragments
    Xiang, Qin
    Sun, Zhe
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (13)
  • [47] SEMIEMPIRICAL CALCULATIONS ON OPEN-SHELL INTERMEDIATES
    FOX, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 20 - COMP
  • [48] Form factor of an open-shell atom
    A. N. Khoperskiĭ
    V. A. Yavna
    A. M. Nadolinskiĭ
    V. V. Timoshevskaya
    Optics and Spectroscopy, 2000, 89 (1) : 4 - 5
  • [49] A classification of open-shell states of molecules
    Wasilewski, J
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 57 (04) : 625 - 640
  • [50] Photogeneration of an open-shell iron nitrido
    West, Thomas
    NATURE SYNTHESIS, 2025, 4 (02): : 144 - 144