Open-Shell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy

被引:97
|
作者
Wang, Han [1 ]
Guo, Jinxiao [2 ]
Lin, Wilson [3 ,4 ]
Fu, Zi [1 ]
Ji, Xiuru [1 ]
Yu, Bo [3 ,4 ]
Lu, Min [1 ]
Cui, Wenguo [1 ]
Deng, Lianfu [1 ]
Engle, Jonathan W. [3 ,4 ]
Wu, Zhiyuan [5 ]
Cai, Weibo [3 ,4 ]
Ni, Dalong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med,Ruijin Hosp, Dept Orthopaed,Shanghai Inst Traumatol & Orthopae, Shanghai Key Lab Prevent & Treatment Bone & Joint, Shanghai 200025, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Orthopaed, Shanghai 200233, Peoples R China
[3] Univ Wisconsin, Dept Radiol, Madison, WI 53705 USA
[4] Univ Wisconsin, Dept Med Phys, Madison, WI 53705 USA
[5] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Intervent Radiol, Shanghai 200025, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
glutathione response; nanomedicine; open shell; positron emission tomography imaging; sonodynamic therapy;
D O I
10.1002/adma.202110283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deleterious effects to normal tissues and short biological half-life of sonosensitizers limit the applications of sonodynamic therapy (SDT). Herein, a new sonosensitizer (Cu(II)NS) is synthesized that consists of porphyrins, chelated Cu2+, and poly(ethylene glycol) (PEG) to overcome the challenges of SDT. As Cu2+ contains 27 electrons, Cu(II)NS has an unpaired electron (open shell), resulting in a doublet ground state and little sonosensitivity. Overexpressed glutathione in the tumor can reduce Cu2+ to generate Cu(I)NS, leading to a singlet ground state and recuperative sonosensitivity. Additionally, PEG endows Cu(II)NS with increased blood biological half-life and enhanced tumor accumulation, further increasing the effect of SDT. Through regulating the valence state of Cu, cancer SDT with enhanced therapeutic index is achieved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] GENERALIZED OPEN-SHELL SCF THEORY
    CABALLOL, R
    GALLIFA, R
    RIERA, JM
    CARBO, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1974, 8 (03) : 373 - 394
  • [32] OPEN-SHELL RANDOM PHASE APPROXIMATION
    ARMSTRONG, LD
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (17) : 2320 - 2331
  • [33] Coulomb excitations of open-shell nuclei
    Radhi, R. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (21)
  • [34] ELECTRONEGATIVITIES AND HARDNESSES OF OPEN-SHELL ATOMS
    GAZQUEZ, JL
    ORTIZ, E
    JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (06): : 2741 - 2748
  • [35] SPIN POLARIZATION IN OPEN-SHELL CHEMISTRY
    PONEC, R
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-WIESBADEN, 1979, 117 : 1 - 9
  • [36] Form factor of an open-shell atom
    Khoperskii, AN
    Yavna, VA
    Nadolinskii, AM
    Timoshevskaya, VV
    OPTICS AND SPECTROSCOPY, 2000, 89 (01) : 4 - 5
  • [37] Tunnel ionization of open-shell atoms
    Zhao, Z. X.
    Brabec, T.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (22) : L345 - L351
  • [38] On the performance of the open-shell perturbation theory
    CHEN FeiWu WEI MeiJu LIU WenJian Department of Chemistry University of Science and Technology Beijing Beijing China Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing China
    Science China(Chemistry), 2011, 54 (03) : 446 - 453
  • [39] INTERACTION ENERGY FOR OPEN-SHELL SYSTEMS
    NEUMANN, DB
    KRAUSS, M
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (01): : 315 - 319
  • [40] ORBITAL ENERGIES IN OPEN-SHELL SYSTEMS
    SINGERMAN, J
    JAFFE, HH
    JOURNAL OF PHYSICAL CHEMISTRY, 1976, 80 (17): : 1928 - 1928