On a Radon transform

被引:0
|
作者
Gots, Ekaterina [1 ]
Lyakhov, Lev [2 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Voronezh State Technol Acad, Voronezh, Russia
关键词
radon transform; inversion formulas; B-hypersingular integrals;
D O I
10.1007/978-3-7643-8684-9_8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article a special type of Radon transform (Kipriyanov-Radon transform K-gamma) is considered and some properties of this transform are proved. The main results of this work are the inversion formulas of K-gamma, which were obtained with a help of general B-hypersingular integrals.
引用
收藏
页码:187 / +
页数:2
相关论文
共 50 条
  • [31] Fractional radon transform: definition
    Zalevsky, Zeev
    Mendlovic, David
    (35):
  • [32] The polynomial discrete Radon transform
    Ines ELouedi
    Régis Fournier
    Amine Naït-Ali
    Atef Hamouda
    Signal, Image and Video Processing, 2015, 9 : 145 - 154
  • [33] THE EXPONENTIAL RADON-TRANSFORM
    TRETIAK, O
    METZ, C
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) : 341 - 354
  • [34] On the Inversion of the xfct Radon Transform
    Miqueles, Eduardo X.
    De Pierro, Alvaro Rodolfo
    STUDIES IN APPLIED MATHEMATICS, 2011, 127 (04) : 394 - 419
  • [35] Optical realization of the radon transform
    Ilovitsh, Tali
    Ilovitsh, Asaf
    Sheridan, John
    Zalevsky, Zeev
    OPTICS EXPRESS, 2014, 22 (26): : 32301 - 32307
  • [36] On the injectivity of the circular Radon transform
    Ambartsoumian, G
    Kuchment, P
    INVERSE PROBLEMS, 2005, 21 (02) : 473 - 485
  • [37] SPHERICAL RADON-TRANSFORM
    XU, GM
    GEOPHYSICAL JOURNAL-OXFORD, 1988, 95 (02): : 361 - 370
  • [38] DISCRETE RADON-TRANSFORM
    BEYLKIN, G
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (02): : 162 - 172
  • [39] INVERSION OF THE ATTENUATED RADON TRANSFORM
    NATTERER, F
    NUMERISCHE MATHEMATIK, 1979, 32 (04) : 431 - 438
  • [40] Fractional Radon transform: Definition
    Zalevsky, Z
    Mendlovic, D
    APPLIED OPTICS, 1996, 35 (23): : 4628 - 4631