The polynomial discrete Radon transform

被引:0
|
作者
Ines ELouedi
Régis Fournier
Amine Naït-Ali
Atef Hamouda
机构
[1] Faculté des Sciences de Tunis,Laboratoire d’Informatique, Programmation Algorithmique et Heuristiques (LIPAH), Computer Technology Department
[2] Université Paris Est-Creteil,Laboratoire d’Images, Signaux et Systèmes Intelligents (LISSI)
来源
关键词
Polynomial curves; Discrete Radon transform; Exact inversion; Pattern recognition;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new approach called polynomial discrete Radon transform (PDRT), regarded as a generalization of the classical finite discrete Radon transform. Specifically, the PDRT transforms an image into Radon space by summing the pixels according to polynomial curves. The PDRT can be applied on square p×p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \times p$$\end{document} images where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is assumed to be a prime number. It is based on a simple arithmetic operations and requires no data interpolation. An interesting property of the PDRT is its exact inversion. This means that an image can be transformed and then perfectly reconstructed. Through this study, we show that the new approach can be applied for some pattern recognition applications.
引用
收藏
页码:145 / 154
页数:9
相关论文
共 50 条
  • [1] The polynomial discrete Radon transform
    ELouedi, Ines
    Fournier, Regis
    Nait-Ali, Amine
    Hamouda, Atef
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 : 145 - 154
  • [2] Fingerprint Recognition using Polynomial Discrete Radon Transform
    Ines, Elouedi
    Dhikra, Hamdi
    Regis, Fournier
    Amine, Nait-Ali
    Atef, Hamouda
    [J]. 2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 319 - 324
  • [3] The Recognition of Polynomial Position and Orientation through the Finite Polynomial Discrete Radon Transform
    Elouedi, Ines
    Fournier, Regis
    Nait-Ali, Amine
    Hamouda, Atef
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 249 - 258
  • [4] Polynomial radon transform
    Niu, BH
    Sun, CY
    Zhang, ZJ
    Shen, C
    Li, YC
    Lu, JG
    Wang, HY
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2001, 44 (02): : 263 - 271
  • [5] The discrete periodic radon transform
    Hsung, TC
    Lun, DPK
    Siu, WC
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) : 2651 - 2657
  • [6] DISCRETE RADON-TRANSFORM
    BEYLKIN, G
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (02): : 162 - 172
  • [7] A modification of the discrete polynomial transform
    Golden, S
    Friedlander, B
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1452 - 1455
  • [8] Modification of the discrete polynomial transform
    Torrey Science Corp, San Diego, United States
    [J]. IEEE Trans Signal Process, 5 (1452-1455):
  • [9] Comments on "The Discrete Periodic Radon Transform"
    Grigoryan, Artyom M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5962 - 5963
  • [10] Sampling properties of the discrete radon transform
    Svalbe, I
    [J]. DISCRETE APPLIED MATHEMATICS, 2004, 139 (1-3) : 265 - 281