A semi-Lagrangian scheme for the curve shortening flow in codimension-2

被引:7
|
作者
Carlini, E. [2 ]
Falcone, M. [2 ]
Ferretti, R. [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
mean curvature motion; curve shortening; semi-Lagrangian scheme;
D O I
10.1016/j.jcp.2007.01.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the model problem where a curve in R 3 moves according to the mean curvature flow (the curve shortening flow). We construct a semi-Lagrangian scheme based on the Feynman-Kac representation formula of the solutions of the related level set geometric equation. The first step is to obtain an approximation of the associated codimension-1 problem formulated by Ambrosio and Soner, where the squared distance from the initial curve is used as initial condition. Since the epsilon-sublevel of this evolution contains the curve, the next step is to extract the curve itself by following an optimal trajectory inside each e-sublevel. We show that this procedure is robust and accurate as long as the "fattening" phenomenon does not occur. Moreover, it can still single out the physically meaningful solution when it occurs. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1388 / 1408
页数:21
相关论文
共 50 条
  • [41] CONVERGENCE OF A SEMIDISCRETE SCHEME FOR THE CURVE SHORTENING FLOW
    DZIUK, G
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04): : 589 - 606
  • [42] A semi-implicit semi-Lagrangian global nonhydrostatic model and the polar discretization scheme
    XueSheng Yang
    JiaBin Chen
    JiangLin Hu
    DeHui Chen
    XueShun Shen
    HongLiang Zhang
    Science in China Series D: Earth Sciences, 2007, 50 : 1885 - 1891
  • [43] Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system
    Martin Campos Pinto
    Michel Mehrenberger
    Numerische Mathematik, 2008, 108 : 407 - 444
  • [44] A semi-Lagrangian scheme for mean curvature motion with nonlinear Neumann conditions
    Achdou, Yves
    Falcone, Maurizio
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (04) : 455 - 485
  • [45] A Semi-Lagrangian Scheme for the Open Table Problem in Granular Matter Theory
    Falcone, M.
    Vita, S. Finzi
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 711 - 718
  • [46] Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)
    Subich, Christopher
    Pellerin, Pierre
    Smith, Gregory
    Dupont, Frederic
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (09) : 4379 - 4398
  • [47] An improved bounded semi-Lagrangian scheme for the turbulent transport of passive scalars
    Verma, Siddhartha
    Xuan, Y.
    Blanquart, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 : 1 - 22
  • [48] Improved semi-Lagrangian stabilizing correction scheme for shallow water equations
    Bourchtein, A
    Bourchtein, L
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 667 - 672
  • [49] A semi-implicit semi-Lagrangian global nonhydrostatic model and the polar discretization scheme
    Yang XueSheng
    Chen JiaBin
    Hu JiangLin
    Chen DeHui
    Shen XueShun
    Zhang HongLiang
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (12): : 1885 - 1891
  • [50] Semi-lagrangian flux scheme for the solution of the aerosol condensation/evaporation equation
    Nguyen, K
    Dabdub, D
    AEROSOL SCIENCE AND TECHNOLOGY, 2002, 36 (04) : 407 - 418