The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation

被引:0
|
作者
Yan, Wei [1 ]
Zhang, Qiaoqiao [1 ]
Zhang, Haixia [1 ]
Zhao, Lu [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Rotation modified KP-type equation; Bilinear estimates; Anisotropic Sobolev spaces; GLOBAL WELL-POSEDNESS; KP-II EQUATION; INITIAL-VALUE PROBLEM; LOCAL REGULARITY; SOBOLEV SPACES; WAVES; EVOLUTION;
D O I
10.1016/j.jman.2020.124198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) type equation partial derivative(x)(u(t) - beta partial derivative(3)(x)u + partial derivative(x)(u(2))) + beta'partial derivative(2)(y)u - gamma u = 0 in the anisotropic Sobolev spaces H-s1,H- s2 (R-2). When beta > 0 and gamma > 0, beta' < 0, we show that the Cauchy problem is locally well-posed in H-s1,H- s2 (R-2) with S-1 > -1/2 and s(2) >= 0. The main difficulty in establishing bilinear estimates related to nonlinear term of RMKP type equation is that the resonant function vertical bar 3 beta xi xi(1)xi(2) - gamma(xi(2)(1) - xi(1)xi(2) + xi(2)(2))/xi xi(1)xi(2) - beta'xi(1)xi(2)/xi (mu(1)/xi(1) - mu(2)/xi(2))(2)vertical bar may tend to zero since beta > 0, gamma > 0 and beta' < 0. When beta > 0 and gamma > 0 and beta' < 0, we also prove that the Cauchy problem for RMKP equation is ill-posed in H-S1,H-0 (R-2) with S-1 < -1/2 in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not C-3. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Kadomtsev-Petviashvili type equation for uneven water depths
    Beji, Serdar
    OCEAN ENGINEERING, 2018, 154 : 226 - 233
  • [42] Solutions of a three-component modified Kadomtsev-Petviashvili equation
    Sun, Lin
    Li, Chuanzhong
    Yuan, Chunxin
    Liu, Wei
    NONLINEAR DYNAMICS, 2025, 113 (04) : 3637 - 3654
  • [43] The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation
    Zhang Juan
    Zhou Zhi-Gang
    Shi Yu-Ren
    Yang Hong-Juan
    Duan Wen-Shan
    ACTA PHYSICA SINICA, 2012, 61 (13)
  • [44] A new class of soliton solutions for the (modified) Kadomtsev-Petviashvili equation
    Renger, W
    MATHEMATISCHE NACHRICHTEN, 1999, 202 : 125 - 140
  • [45] Algebro-geometric solution to the modified Kadomtsev-Petviashvili equation
    Chen, JB
    Geng, XG
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (08) : 2217 - 2222
  • [46] Traveling wave solutions of a generalized modified Kadomtsev-Petviashvili equation
    Schürmann, HW
    Serov, VS
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (06) : 2181 - 2187
  • [47] The derivation of a modified Kadomtsev-Petviashvili equation and the stability of its solutions
    OKeir, IS
    Parkes, EJ
    PHYSICA SCRIPTA, 1997, 55 (02): : 135 - 142
  • [48] THE SPECTRAL PROBLEM ASSOCIATED WITH THE KADOMTSEV-PETVIASHVILI EQUATION-II
    HAIK, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1995, 74 (05): : 415 - 451
  • [49] SIMILARITY SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION
    LOU, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13): : L649 - L654
  • [50] The generalized Kadomtsev-Petviashvili equation I
    Schleinkofer, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (02) : 1245 - 1249