The Cauchy problem for the rotation-modified Kadomtsev-Petviashvili type equation

被引:0
|
作者
Yan, Wei [1 ]
Zhang, Qiaoqiao [1 ]
Zhang, Haixia [1 ]
Zhao, Lu [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Rotation modified KP-type equation; Bilinear estimates; Anisotropic Sobolev spaces; GLOBAL WELL-POSEDNESS; KP-II EQUATION; INITIAL-VALUE PROBLEM; LOCAL REGULARITY; SOBOLEV SPACES; WAVES; EVOLUTION;
D O I
10.1016/j.jman.2020.124198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) type equation partial derivative(x)(u(t) - beta partial derivative(3)(x)u + partial derivative(x)(u(2))) + beta'partial derivative(2)(y)u - gamma u = 0 in the anisotropic Sobolev spaces H-s1,H- s2 (R-2). When beta > 0 and gamma > 0, beta' < 0, we show that the Cauchy problem is locally well-posed in H-s1,H- s2 (R-2) with S-1 > -1/2 and s(2) >= 0. The main difficulty in establishing bilinear estimates related to nonlinear term of RMKP type equation is that the resonant function vertical bar 3 beta xi xi(1)xi(2) - gamma(xi(2)(1) - xi(1)xi(2) + xi(2)(2))/xi xi(1)xi(2) - beta'xi(1)xi(2)/xi (mu(1)/xi(1) - mu(2)/xi(2))(2)vertical bar may tend to zero since beta > 0, gamma > 0 and beta' < 0. When beta > 0 and gamma > 0 and beta' < 0, we also prove that the Cauchy problem for RMKP equation is ill-posed in H-S1,H-0 (R-2) with S-1 < -1/2 in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not C-3. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Stochastic Kadomtsev-Petviashvili equation
    Gorodtsov, VA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 90 (06) : 1105 - 1113
  • [32] QUANTIZATION OF THE KADOMTSEV-PETVIASHVILI EQUATION
    Kozlowski, K.
    Sklyanin, E. K.
    Torrielli, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (02) : 1162 - 1183
  • [33] Solitary wave solutions for the modified Kadomtsev-Petviashvili equation
    Zhao, Xiaoshan
    Xu, Wei
    Jia, Huabing
    Zhou, Hongxian
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 465 - 475
  • [34] Stochastic Kadomtsev-Petviashvili equation
    V. A. Gorodtsov
    Journal of Experimental and Theoretical Physics, 2000, 90 : 1105 - 1113
  • [35] On the nonisospectral Kadomtsev-Petviashvili equation
    Yu, GF
    Tam, HW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13): : 3367 - 3373
  • [36] UNIFIED KADOMTSEV-PETVIASHVILI EQUATION
    CHEN, XN
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (12): : 2058 - 2060
  • [37] Modified Kadomtsev-Petviashvili equation in cold collisionless plasma
    Bindu, SG
    Kuriakose, VC
    PRAMANA-JOURNAL OF PHYSICS, 1999, 52 (01): : 39 - 47
  • [38] On the decomposition of the modified Kadomtsev-Petviashvili equation and explicit solutions
    Dai, HH
    Geng, XG
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7501 - 7509
  • [39] Novel localized wave of modified Kadomtsev-Petviashvili equation
    Wang, Ming
    Xu, Tao
    He, Guoliang
    WAVE MOTION, 2024, 129
  • [40] STABILITY OF SOLITARY WAVES OF THE KADOMTSEV-PETVIASHVILI EQUATION WITH A WEAK ROTATION
    Esfahani, Amin
    Levandosky, Steve
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (06) : 5096 - 5133