Entire chromatic number and Δ-matching of outerplane graphs

被引:1
|
作者
Wang, WF [1 ]
Zhang, KM
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
outerplane graph; matching; entire chromatic number;
D O I
10.1016/S0252-9602(17)30207-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an outerplane graph with maximum degree A and the entire chromatic number chi(vef) (G). This paper proves that if Delta >= 6, then Delta + 1 <= chi(vef) (G) <= Delta + 2, and chi(vef) (G) = Delta + 1 if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree.
引用
收藏
页码:672 / 680
页数:9
相关论文
共 50 条
  • [31] ON THE DYNAMIC CHROMATIC NUMBER OF GRAPHS
    Akbari, S.
    Ghanbari, M.
    Jahanbekam, S.
    COMBINATORICS AND GRAPHS, 2010, 531 : 11 - +
  • [32] On the chromatic number of disk graphs
    Malesinska, E
    Piskorz, S
    Weissenfels, G
    NETWORKS, 1998, 32 (01) : 13 - 22
  • [33] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192
  • [34] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [35] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [36] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [37] On incompactness for chromatic number of graphs
    Saharon Shelah
    Acta Mathematica Hungarica, 2013, 139 : 363 - 371
  • [38] On the chromatic number of circulant graphs
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5687 - 5696
  • [39] On Group Chromatic Number of Graphs
    Hong-Jian Lai
    Xiangwen Li
    Graphs and Combinatorics, 2005, 21 : 469 - 474
  • [40] On the adaptable chromatic number of graphs
    Hell, Pavol
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 912 - 921