Entire chromatic number and Δ-matching of outerplane graphs

被引:1
|
作者
Wang, WF [1 ]
Zhang, KM
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
outerplane graph; matching; entire chromatic number;
D O I
10.1016/S0252-9602(17)30207-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an outerplane graph with maximum degree A and the entire chromatic number chi(vef) (G). This paper proves that if Delta >= 6, then Delta + 1 <= chi(vef) (G) <= Delta + 2, and chi(vef) (G) = Delta + 1 if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree.
引用
收藏
页码:672 / 680
页数:9
相关论文
共 50 条
  • [21] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [22] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [23] On the strong chromatic number of graphs
    Axenovich, Maria
    Martin, Ryan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (03) : 741 - 747
  • [24] Chromatic Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 253 - 257
  • [25] Chromatic number and subtrees of graphs
    Xu, Baogang
    Zhang, Yingli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 441 - 457
  • [26] The chromatic number of oriented graphs
    Sopena, E
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 191 - 205
  • [27] COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER
    Starr, Colin L.
    Turner, Galen E., III
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2008, 20 (01) : 19 - 26
  • [28] CHROMATIC NUMBER OF SKEW GRAPHS
    PAHLINGS, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 303 - 306
  • [29] On Indicated Chromatic Number of Graphs
    Raj, S. Francis
    Raj, R. Pandiya
    Patil, H. P.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 203 - 219
  • [30] On the chromatic number of tree graphs
    Estivill-Castro, V
    Noy, M
    Urrutia, J
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 363 - 366