Some new error inequalities for a generalized quadrature rule of open type

被引:2
|
作者
Liu, Wenjun [1 ]
Sun, Yanan [1 ]
Zhang, Qilin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Atmospher Phys, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Error inequalities; Quadrature rule; Sharp inequalities; PARAMETER; FORMULA;
D O I
10.1016/j.camwa.2011.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new error inequalities for a generalized quadrature rule of open type are established. Especially, two sharp inequalities are derived when n is an odd and an even integer, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2218 / 2224
页数:7
相关论文
共 50 条
  • [31] On some Hardy type inequalities involving generalized means
    Pasteczka, Pawel
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2): : 167 - 173
  • [32] On Some New Extensions of Inequalities of Hermite-Hadamard Type for Generalized Fractional Integrals
    Budak, Huseyin
    Bilisik, Candan Can
    Sarikaya, Mehmet Zeki
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 65 - 79
  • [33] On New Generalized Ostrowski Type Integral Inequalities
    Qayyum, A.
    Shoaib, M.
    Matouk, A. E.
    Latif, Andm. A.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [34] Some new generalized weighted dynamic inequalities of Hardy's type on time scales
    Saker, S. H.
    El-sheikh, M. M. A.
    Madian, A. M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04): : 289 - 301
  • [35] Some Milne's rule type inequalities in quantum calculus
    Sial, Ifra Bashir
    Budak, Huseyin
    Ali, Muhammad Aamir
    FILOMAT, 2023, 37 (27) : 9119 - 9134
  • [36] Some new inequalities of the Huygens type
    Zhu, Ling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1180 - 1182
  • [37] Some New Hilbert Type Inequalities
    Salem, Shaban Raslan
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (01): : 19 - 29
  • [38] Some new Iyengar type inequalities
    Qi, F
    Cerone, P
    Dragomir, SS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 997 - 1015
  • [39] Some new Young type inequalities
    Ren, Yonghui
    AIMS MATHEMATICS, 2024, 9 (03): : 7414 - 7425
  • [40] SOME NEW CEBYSEV TYPE INEQUALITIES
    Zafar, Fiza
    Mir, Nazir Ahmad
    Rafiq, Arif
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (02) : 221 - 229