Some new error inequalities for a generalized quadrature rule of open type

被引:2
|
作者
Liu, Wenjun [1 ]
Sun, Yanan [1 ]
Zhang, Qilin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Atmospher Phys, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Error inequalities; Quadrature rule; Sharp inequalities; PARAMETER; FORMULA;
D O I
10.1016/j.camwa.2011.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new error inequalities for a generalized quadrature rule of open type are established. Especially, two sharp inequalities are derived when n is an odd and an even integer, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2218 / 2224
页数:7
相关论文
共 50 条
  • [21] A new quadrature rule derived from spline interpolation with error analysis
    Taghvafard, Hadi
    World Academy of Science, Engineering and Technology, 2011, 79 : 972 - 977
  • [22] Some new generalized Gronwall-Bellman type discrete fractional inequalities
    Feng, Qinghua
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 403 - 411
  • [23] Some new Chebyshev type inequalities utilizing generalized fractional integral operators
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    AIMS MATHEMATICS, 2020, 5 (02): : 1147 - 1161
  • [24] Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities
    Ali, Rana Safdar
    Mukheimer, Aiman
    Abdeljawad, Thabet
    Mubeen, Shahid
    Ali, Sabila
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [25] Some New Generalized Fractional Newton's Type Inequalities for Convex Functions
    Soontharanon, Jarunee
    Ali, Muhammad Aamir
    Budak, Hueseyin
    Koesem, Pinar
    Nonlaopon, Kamsing
    Sitthiwirattham, Thanin
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [26] NEW INEQUALITIES FOR SOME GENERALIZED MATHIEU TYPE SERIES AND THE RIEMANN ZETA FUNCTION
    Srivastava, H. M.
    Mehrez, Khaled
    Tomovski, Zivorad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 163 - 174
  • [27] Error Bounds for a Gauss-Type Quadrature Rule to Evaluate Hypersingular Integrals
    De Bonis, Maria Carmela
    Occorsio, Donatella
    FILOMAT, 2018, 32 (07) : 2525 - 2543
  • [28] A generalized discrepancy and quadrature error bound
    Hickernell, FJ
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 299 - 322
  • [29] SOME LOCAL FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED PREINVEX FUNCTIONS AND APPLICATIONS TO NUMERICAL QUADRATURE
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (05)
  • [30] Some trapezoid type inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 289 - 295