Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states

被引:13
|
作者
Xiong, Liang [1 ,2 ]
Liu, Jianzhou [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 02期
基金
中国国家自然科学基金;
关键词
Z-eigenvalue; Nonnegative tensors; Spectral radius; Geometric measure of entanglement; SHIFTED POWER METHOD;
D O I
10.1007/s40314-020-01166-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our paper, we concentrate on the Z-eigenvalue inclusion theorem and its application in the geometric measure of entanglement of multipartite pure states. We present a new Z-eigenvalue inclusion theorem by virtue of the division and classification of tensor elements, and tighter bounds of Z-spectral radius of weakly symmetric nonnegative tensors are obtained. As applications, we present some theoretical upper and lower bounds of entanglement for symmetric pure state with nonnegative amplitudes for two kinds of geometric measures with different definitions, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Z-Eigenvalue Localization Sets for Even Order Tensors and Their Applications
    Sang, Caili
    Chen, Zhen
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 323 - 339
  • [42] Pareto Z-eigenvalue inclusion theorems for tensor eigenvalue complementarity problems
    Yang, Ping
    Wang, Yiju
    Wang, Gang
    Hou, Qiuling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [43] Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure
    Sadhukhan, Debasis
    Roy, Sudipto Singha
    Pal, Amit Kumar
    Rakshit, Debraj
    Sen , Aditi
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [44] Computation of the geometric measure of entanglement for pure multiqubit states
    Chen, Lin
    Xu, Aimin
    Zhu, Huangjun
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [45] Measure of entanglement for general pure multipartite states based on the plucker coordinates
    Heydari, Hoshang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (11) : 2801 - 2807
  • [46] Entanglement entropy of multipartite pure states
    Bravyi, S
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [47] Identifying the Positive Definiteness of Even-Order Weakly Symmetric Tensors via Z-Eigenvalue Inclusion Sets
    Shen, Feichao
    Zhang, Ying
    Wang, Gang
    SYMMETRY-BASEL, 2021, 13 (07):
  • [48] Measure of Entanglement for General Pure Multipartite States Based on the Plücker Coordinates
    Hoshang Heydari
    International Journal of Theoretical Physics, 2007, 46 : 2801 - 2807
  • [49] A New Multipartite Entanglement Measure for Arbitrary n-qudit Pure States
    Chao Zhao
    Guo-wu Yang
    Xiao-yu Li
    International Journal of Theoretical Physics, 2016, 55 : 1668 - 1678
  • [50] The geometric measure of entanglement of three-partite pure states
    Kazakov, A. Ya.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 907 - 915