Z-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states

被引:13
|
作者
Xiong, Liang [1 ,2 ]
Liu, Jianzhou [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 02期
基金
中国国家自然科学基金;
关键词
Z-eigenvalue; Nonnegative tensors; Spectral radius; Geometric measure of entanglement; SHIFTED POWER METHOD;
D O I
10.1007/s40314-020-01166-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our paper, we concentrate on the Z-eigenvalue inclusion theorem and its application in the geometric measure of entanglement of multipartite pure states. We present a new Z-eigenvalue inclusion theorem by virtue of the division and classification of tensor elements, and tighter bounds of Z-spectral radius of weakly symmetric nonnegative tensors are obtained. As applications, we present some theoretical upper and lower bounds of entanglement for symmetric pure state with nonnegative amplitudes for two kinds of geometric measures with different definitions, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Simple entanglement measure for multipartite pure states
    Pan, F
    Liu, D
    Lu, GY
    Draayer, JP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (05) : 1241 - 1247
  • [22] Simple Entanglement Measure for Multipartite Pure States
    Feng Pan
    Feng Pan
    Feng Pan
    Dan Liu
    Guoying Lu
    J. P. Draayer
    International Journal of Theoretical Physics, 2004, 43 : 1241 - 1247
  • [23] A new Z-eigenvalue localization set for tensors
    Zhao, Jianxing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [24] A new Z-eigenvalue localization set for tensors
    Jianxing Zhao
    Journal of Inequalities and Applications, 2017
  • [25] On the geometric measure of entanglement for pure states
    Carrington, M. E.
    Kunstatter, G.
    Perron, J.
    Plosker, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (43)
  • [26] Entanglement measure for general pure multipartite quantum states
    Heydari, H
    Björk, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (39): : 9251 - 9260
  • [27] Z-Eigenvalue Localization Sets for Tensors and the Applications in Rank-One Approximation and Quantum Entanglement
    Zhang, Juan
    Chen, Xuechan
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)
  • [28] Upper bound for the largest Z-eigenvalue of positive tensors
    He, Jun
    Huang, Ting-Zhu
    APPLIED MATHEMATICS LETTERS, 2014, 38 : 110 - 114
  • [29] Z-Eigenvalue Localization Sets for Tensors and the Applications in Rank-One Approximation and Quantum Entanglement
    Juan Zhang
    Xuechan Chen
    Acta Applicandae Mathematicae, 2023, 186
  • [30] Further Results for Z-Eigenvalue Localization Theorem for Higher-Order Tensors and Their Applications
    Xiong, Liang
    Liu, Jianzhou
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 229 - 264