On the Thermal Degradation of Tunnel Diodes in Multijunction Solar Cells

被引:11
|
作者
Rey-Stolle, Ignacio [1 ,2 ]
Garcia, Ivan [1 ]
Barrigon, Enrique [1 ,3 ]
Olea, Javier [4 ]
Pastor, David [4 ]
Ochoa, Mario [1 ]
Barrutia, Laura [1 ]
Algora, Carlos [1 ]
Walukiewicz, Wladek [2 ]
机构
[1] Univ Politecn Madrid, Inst Energia Solar, Madrid, Spain
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Lund Univ, Solid State Phys, Lund, Sweden
[4] Univ Complutense Madrid, Fac CC Fis, Madrid, Spain
基金
新加坡国家研究基金会;
关键词
D O I
10.1063/1.5001427
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tunnel junctions are essential components of multijunction solar cells. These highly doped p/n junctions provide the electrical interconnect between the subcells that constitute a multijunction solar cell device. The conductivity and the peak tunneling current of tunnel diodes are known to be severely affected by thermal load. This is a general phenomenon observed in tunnel junctions despite the materials used, the dopants employed or the growth technique applied. Despite this generality, the explanations for this thermal degradation tend to be quite material/dopant specific. On the contrary, in this work we apply the amphoteric native defect model to explain this issue. In this context, the degradation can be explained as a consequence of the net loss of free carrier concentration produced by the creation of native compensating defects in the highly doped layers of the tunnel junction. Experiments carried out on n(++) GaAs agree well with the model.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Multijunction solar cells for concentrator applications
    Olson, J. M.
    NOBEL SYMPOSIUM 153: NANOSCALE ENERGY CONVERTERS, 2013, 1519 : 22 - 25
  • [32] Modeling Techniques for Multijunction Solar Cells
    Hinzer, Karin
    Beattie, Meghan N.
    Wilkins, Matthew M.
    Valdivia, Christopher E.
    2018 18TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD 2018), 2018, : 133 - 134
  • [33] Modeling the efficiency of multijunction solar cells
    Sachenko, A. B.
    Kostylyov, V. P.
    Kulish, N. R.
    Sokolovskyi, I. O.
    Shkrebty, A. I.
    SEMICONDUCTORS, 2014, 48 (05) : 675 - 682
  • [34] Analysis of vertical multijunction solar cells
    Khalis, Mohammed
    Masrour, Rachid
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2019, 16 (14) : 1242 - 1245
  • [35] Material Specific Simple Modeling Approach for Tunnel Junction Parameters Compatible for Multijunction Solar Cells
    Rahman, Md. Sazzadur
    Hasan, Sazzad
    2017 4TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2017, : 713 - 718
  • [36] The Segmental Approximation in Multijunction Solar Cells
    Mintairov, M. A.
    Kalyuzhnyy, N. A.
    Evstropov, V. V.
    Lantratov, V. M.
    Mintairov, S. A.
    Shvarts, M. Z.
    Andreev, V. M.
    Luque, A.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (04): : 1229 - 1236
  • [37] Modeling and Analysis of Multijunction Solar Cells
    Gonzalez, Maria
    Chan, Ngai
    Ekins-Daukes, Nicholas J.
    Adams, Jessica G. J.
    Stavrinou, Paul
    Vurgaftman, Igor
    Meyer, Jerry R.
    Abell, Josh
    Walters, Robert J.
    Cress, Cory D.
    Jenkins, Phillip P.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
  • [38] PERMANENT DEGRADATION OF GAAS TUNNEL DIODES
    GOLD, RD
    WEISBERG, LR
    SOLID-STATE ELECTRONICS, 1964, 7 (11) : 811 - 821
  • [39] IV-characterization of devices consisting of solar cells and tunnel diodes
    Guter, Wolfgang
    Beft, Andreas W.
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 749 - 752
  • [40] Numerical simulation of tunnel diodes for multi-junction solar cells
    Hermle, A.
    Letay, G.
    Philipps, S. P.
    Bett, A. W.
    PROGRESS IN PHOTOVOLTAICS, 2008, 16 (05): : 409 - 418