On the Thermal Degradation of Tunnel Diodes in Multijunction Solar Cells

被引:11
|
作者
Rey-Stolle, Ignacio [1 ,2 ]
Garcia, Ivan [1 ]
Barrigon, Enrique [1 ,3 ]
Olea, Javier [4 ]
Pastor, David [4 ]
Ochoa, Mario [1 ]
Barrutia, Laura [1 ]
Algora, Carlos [1 ]
Walukiewicz, Wladek [2 ]
机构
[1] Univ Politecn Madrid, Inst Energia Solar, Madrid, Spain
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Lund Univ, Solid State Phys, Lund, Sweden
[4] Univ Complutense Madrid, Fac CC Fis, Madrid, Spain
基金
新加坡国家研究基金会;
关键词
D O I
10.1063/1.5001427
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tunnel junctions are essential components of multijunction solar cells. These highly doped p/n junctions provide the electrical interconnect between the subcells that constitute a multijunction solar cell device. The conductivity and the peak tunneling current of tunnel diodes are known to be severely affected by thermal load. This is a general phenomenon observed in tunnel junctions despite the materials used, the dopants employed or the growth technique applied. Despite this generality, the explanations for this thermal degradation tend to be quite material/dopant specific. On the contrary, in this work we apply the amphoteric native defect model to explain this issue. In this context, the degradation can be explained as a consequence of the net loss of free carrier concentration produced by the creation of native compensating defects in the highly doped layers of the tunnel junction. Experiments carried out on n(++) GaAs agree well with the model.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Operating characteristics of multijunction solar cells
    Kinsey, Geoffrey S.
    Pien, Peichen
    Hebert, Peter
    Sherif, Raed A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 950 - 951
  • [22] Modeling the efficiency of multijunction solar cells
    A. B. Sachenko
    V. P. Kostylyov
    N. R. Kulish
    I. O. Sokolovskyi
    A. I. Shkrebty
    Semiconductors, 2014, 48 : 675 - 682
  • [23] MULTIJUNCTION CONCENTRATOR SOLAR-CELLS
    WERTHEN, JG
    SOLAR CELLS, 1987, 21 : 452 - 452
  • [24] Multijunction amorphous silicon solar cells
    Carlson, D.E.
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1991, 63 (01): : 305 - 313
  • [25] Metamorphic epitaxy for multijunction solar cells
    France, Ryan M.
    Dimroth, Frank
    Grassman, Tyler J.
    King, Richard R.
    MRS BULLETIN, 2016, 41 (03) : 202 - 209
  • [26] A review of polymer multijunction solar cells
    Siddiki, Mahbube Khoda
    Li, Jing
    Galipeau, David
    Qiao, Qiquan
    ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (07) : 867 - 883
  • [27] Effect of GaAs interfacial layer on the performance of high bandgap tunnel junctions for multijunction solar cells
    Samberg, Joshua P.
    Carlin, C. Zachary
    Bradshaw, Geoff K.
    Colter, Peter C.
    Harmon, Jeffrey L.
    Allen, J. B.
    Hauser, John R.
    Bedair, S. M.
    APPLIED PHYSICS LETTERS, 2013, 103 (10)
  • [28] Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction
    Zide, JMO
    Kleiman-Shwarsctein, A
    Strandwitz, NC
    Zimmerman, JD
    Steenblock-Smith, T
    Gossard, AC
    Forman, A
    Ivanovskaya, A
    Stucky, GD
    APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [29] Practical limits of multijunction solar cells
    Peters, Ian Marius
    Gallegos, Carlos David Rodriguez
    Lueer, Larry
    Hauch, Jens A.
    Brabec, Christoph J.
    PROGRESS IN PHOTOVOLTAICS, 2023, 31 (10): : 1006 - 1015
  • [30] The Potential of Multijunction Perovskite Solar Cells
    Horantner, Maximilian T.
    Leijtens, Tomas
    Ziffer, Mark E.
    Eperon, Giles E.
    Christoforo, M. Greyson
    McGehee, Michael D.
    Snaith, Henry J.
    ACS ENERGY LETTERS, 2017, 2 (10): : 2506 - 2513