Points of increase for random walks

被引:6
|
作者
Peres, Y [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
D O I
10.1007/BF02761045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Say that a sequence S-0,...,S-n has a (global) point of increase at k if S-k is maximal among S-0,...,S-k and minimal among S-k,...S-n. We give an elementary proof that an n-step symmetric random walk on the line has a (global) point of increase with probability comparable to 1/log n. (No moment assumptions are needed.) This implies the classical fact, due to Dvoretzky, Erdos and Kakutani (1961), that Brownian motion has no points of increase.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 50 条
  • [41] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [42] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    NANO-NET, 2009, 3 : 95 - +
  • [43] Random walks in a random environment
    S. R. S. Varadhan
    Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [44] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01): : 456 - 490
  • [45] How random are random walks?
    Blei, R
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [46] REGULAR INCREASE OF VARIANCE OF NUMBER OF RANDOM POINTS IN EUCLIDEAN SPACE
    PITERBARG, VI
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (03) : 443 - 444
  • [47] Dynamic Network Embeddings: From Random Walks to Temporal Random Walks
    Nguyen, Giang H.
    Lee, John Boaz
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Koh, Eunyee
    Kim, Sungchul
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1085 - 1092
  • [48] SHAPE ASYMMETRY OF RANDOM-WALKS AND NONREVERSAL RANDOM-WALKS
    ZIFFERER, G
    OLAJ, OF
    JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (01): : 636 - 639
  • [49] Relation between random walks and quantum walks
    Boettcher, Stefan
    Falkner, Stefan
    Portugal, Renato
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [50] RANDOM-WALKS ON RANDOM TREES
    MOON, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &