Points of increase for random walks

被引:6
|
作者
Peres, Y [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
D O I
10.1007/BF02761045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Say that a sequence S-0,...,S-n has a (global) point of increase at k if S-k is maximal among S-0,...,S-k and minimal among S-k,...S-n. We give an elementary proof that an n-step symmetric random walk on the line has a (global) point of increase with probability comparable to 1/log n. (No moment assumptions are needed.) This implies the classical fact, due to Dvoretzky, Erdos and Kakutani (1961), that Brownian motion has no points of increase.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 50 条
  • [31] Exceptional points of two-dimensional random walks at multiples of the cover time
    Yoshihiro Abe
    Marek Biskup
    Probability Theory and Related Fields, 2022, 183 : 1 - 55
  • [32] INFINITE LIMITS AND INFINITE LIMIT POINTS OF RANDOM-WALKS AND TRIMMED SUMS
    KESTEN, H
    MALLER, RA
    ANNALS OF PROBABILITY, 1994, 22 (03): : 1473 - 1513
  • [33] RANDOM WALKS
    PHATARFOD, RM
    SPEED, TP
    WALKER, AM
    JOURNAL OF APPLIED PROBABILITY, 1971, 8 (01) : 198 - +
  • [34] Random walks
    Slade, G
    AMERICAN SCIENTIST, 1996, 84 (02) : 146 - 153
  • [35] Book review: Random Walks and Random Environments Volume I: Random Walks
    Hughes, Barry D.
    Australian and New Zealand Physicist, 1996, 33 (03):
  • [36] Random walks in a random environment
    Varadhan, SRS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (04): : 309 - 318
  • [37] Random Walks with Invariant Loop Probabilities: Stereographic Random Walks
    Montero, Miquel
    ENTROPY, 2021, 23 (06)
  • [38] Random walks in random environments
    Zeitouni, Ofer
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : R433 - R464
  • [39] Random walks with random velocities
    Zaburdaev, Vasily
    Schmiedeberg, Michael
    Stark, Holger
    PHYSICAL REVIEW E, 2008, 78 (01):
  • [40] Random walks and random permutations
    Forrester, PJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : L417 - L423