Points of increase for random walks

被引:6
|
作者
Peres, Y [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
D O I
10.1007/BF02761045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Say that a sequence S-0,...,S-n has a (global) point of increase at k if S-k is maximal among S-0,...,S-k and minimal among S-k,...S-n. We give an elementary proof that an n-step symmetric random walk on the line has a (global) point of increase with probability comparable to 1/log n. (No moment assumptions are needed.) This implies the classical fact, due to Dvoretzky, Erdos and Kakutani (1961), that Brownian motion has no points of increase.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 50 条