Kernel Estimates for Schrodinger Type Operators with Unbounded Diffusion and Potential Terms
被引:10
|
作者:
论文数: 引用数:
h-index:
机构:
Canale, Anna
[1
]
论文数: 引用数:
h-index:
机构:
Rhandi, Abdelaziz
[1
]
Tacelli, Cristian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
Tacelli, Cristian
[1
]
机构:
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
Schrodinger type operator;
semigroup;
heat kernel estimates;
ELLIPTIC-OPERATORS;
COEFFICIENTS;
GENERATION;
D O I:
10.4171/ZAA/1593
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that the heat kernel associated to the Schrodinger type operator A := ( 1 + vertical bar x vertical bar(alpha)) Delta- vertical bar x vertical bar (beta) satisfies the estimate k (t,x,y) <= c(1)e (lambda 0t)e(c2t-b) (vertical bar x vertical bar vertical bar y vertical bar)(-N-1)/2-(beta-alpha)/4/1+vertical bar y vertical bar(alpha-root 2/beta-alpha+1 vertical bar)x(vertical bar beta-alpha+2/2)e(-root 2/beta-alpha+2 vertical bar)y vertical bar beta-alpha+2/2 for t > 0; vertical bar x vertical bar; vertical bar y vertical bar >= 1, where c(1); c(2) are positive constants and b = beta-alpha+2/beta+alpha-2 provided that N > 2; alpha >= 2 and beta > alpha-2. We also obtain an estimate of the eigenfunctions of Lambda.