Heat kernel estimates for critical fractional diffusion operators

被引:26
|
作者
Xie, Longjie [1 ]
Zhang, Xicheng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词
heat kernel estimate; gradient estimate; critical diffusion operator; Levi's method; LAPLACIAN; EQUATIONS; REGULARITY;
D O I
10.4064/sm224-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Holder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.
引用
收藏
页码:221 / 263
页数:43
相关论文
共 50 条