An Exploratory Study of Sequence Alignment for Improved Sensor-Based Human Activity Recognition

被引:0
|
作者
Shrestha, Prabhat [1 ]
Nath, Nipun D. [1 ]
Behzadan, Amir H. [1 ]
机构
[1] Texas A&M Univ, Dept Construct Sci, 3137 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
OPTIMAL MATCHING METHODS; SYSTEM;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Sequence alignment (SA) is a well-established technique in bioinformatics for analyzing deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or protein sequences and identifying regions of similarity. The main goal of SA is to discover relationships between strings of data by deploying a series of heuristic or probabilistic methods to align a new string (e.g., DNA of a new species) with an existing string (DNA of a known species). SA has also been used sporadically in linguistics, social sciences, and finance. In this paper, the authors explore the prospect of coupling machine learning (ML) and SA to improve the output of human activity recognition (HAR) methods. In particular, several field experiments are conducted to collect heterogeneous human motion data via wearable sensors. Collected data is further mined using ML to identify sequences of activities performed in each experiment. Given the inaccuracy of sensor readings and the limitations of ML algorithms especially in handling datasets from complex human activities such as those performed by construction workers, it is expected that the resulting activity sequences not fully match actual activity sequences as observed in the field. To further clean up this inherent noise, SA is deployed to refine imperfections in the resulting activity sequences by manipulating the output of HAR and ultimately aligning noisy activity sequences with ground truth sequences. The outcome of this work is a systematic method to improve the reliability of HAR from sensor readings, which can benefit decision-making as related to task planning, resource management, productivity monitoring, and ergonomic assessment.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
  • [31] LOCAL AND GLOBAL ALIGNMENTS FOR GENERALIZABLE SENSOR-BASED HUMAN ACTIVITY RECOGNITION
    Lu, Wang
    Wang, Jindong
    Chen, Yiqiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3833 - 3837
  • [32] Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    SENSORS, 2021, 21 (22)
  • [33] From action to activity: Sensor-based activity recognition
    Liu, Ye
    Nie, Liqiang
    Liu, Li
    Rosenblum, David S.
    NEUROCOMPUTING, 2016, 181 : 108 - 115
  • [34] Review of Sensor-based Activity Recognition Systems
    Guan, Donghai
    Ma, Tinghuai
    Yuan, Weiwei
    Lee, Young-Koo
    Sarkar, A. M. Jehad
    IETE TECHNICAL REVIEW, 2011, 28 (05) : 418 - 433
  • [35] Subject variability in sensor-based activity recognition
    Jimale, Ali Olow
    Noor, Mohd Halim Mohd
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3261 - 3274
  • [36] Subject variability in sensor-based activity recognition
    Ali Olow Jimale
    Mohd Halim Mohd Noor
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3261 - 3274
  • [37] Sensor-based Activity Recognition using Deep Learning: A Comparative Study
    Trabelsi, Imen
    Francoise, Jules
    Bellik, Yacine
    PROCEEDINGS OF 2022 8TH INTERNATIONAL CONFERENCE ON MOVEMENT AND COMPUTING, MOCO 2022, 2022,
  • [38] Multiclass autoencoder-based active learning for sensor-based human activity recognition
    Park, Hyunseo
    Lee, Gyeong Ho
    Han, Jaeseob
    Choi, Jun Kyun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 151 : 71 - 84
  • [39] Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition
    Takenaka, Koki
    Kondo, Kei
    Hasegawa, Tatsuhito
    SENSORS, 2023, 23 (20)
  • [40] Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition
    Tian, Yiming
    Zhang, Jie
    Chen, Lingling
    Geng, Yanli
    Wang, Xitai
    SENSORS, 2019, 19 (16)