Subject variability in sensor-based activity recognition

被引:6
|
作者
Jimale, Ali Olow [1 ,2 ]
Noor, Mohd Halim Mohd [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
[2] SIMAD Univ, Fac Comp, Mogadishu, Somalia
关键词
Activity recognition; Deep learning; Machine learning; Subject variability; MONITORING-SYSTEM;
D O I
10.1007/s12652-021-03465-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building classification models in activity recognition is based on the concept of exchangeability. While splitting the dataset into training and test sets, we assume that the training set is exchangeable with the test set and expect good classification performance. However, this assumption is invalid due to subject variability of the training and test sets due to age differences. This happens when the classification models are trained with adult dataset and tested it with elderly dataset. This study investigates the effects of subject variability on activity recognition using inertial sensor. Two different datasets-one locally collected from 15 elders and another public from 30 adults with eight types of activities-were used to evaluate the assessment techniques using ten-fold cross-validation. Three sets of experiments have been conducted: experiments on the public dataset only, experiments on the local dataset only, and experiments on public (as training) and local (as test) datasets using machine learning and deep learning classifiers including single classifiers (Support Vector Machine, Decision Tree, K-Nearest Neighbors), ensemble classifiers (Adaboost, Random Forest, and XGBoost), and Convolutional Neural Network. The experimental results show that there is a significant performance drop in activity recognition on different subjects with different age groups. It demonstrates that on average the drop in recognition accuracy is 9.75 and 12% for machine learning and deep learning models respectively. This confirms that subject variability concerning age is a valid problem that degrades the performance of activity recognition models.
引用
下载
收藏
页码:3261 / 3274
页数:14
相关论文
共 50 条
  • [1] Subject variability in sensor-based activity recognition
    Ali Olow Jimale
    Mohd Halim Mohd Noor
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3261 - 3274
  • [2] Sensor-Based Activity Recognition
    Chen, Liming
    Hoey, Jesse
    Nugent, Chris D.
    Cook, Diane J.
    Yu, Zhiwen
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (06): : 790 - 808
  • [3] Generic semi-supervised adversarial subject translation for sensor-based activity recognition
    Soleimani, Elnaz
    Khodabandelou, Ghazaleh
    Chibani, Abdelghani
    Amirat, Yacine
    NEUROCOMPUTING, 2022, 500 : 649 - 661
  • [4] From action to activity: Sensor-based activity recognition
    Liu, Ye
    Nie, Liqiang
    Liu, Li
    Rosenblum, David S.
    NEUROCOMPUTING, 2016, 181 : 108 - 115
  • [5] Review of Sensor-based Activity Recognition Systems
    Guan, Donghai
    Ma, Tinghuai
    Yuan, Weiwei
    Lee, Young-Koo
    Sarkar, A. M. Jehad
    IETE TECHNICAL REVIEW, 2011, 28 (05) : 418 - 433
  • [6] Lifelong Learning in Sensor-based Human Activity Recognition
    Ye, Juan
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 2 - 2
  • [7] Codebook Approach for Sensor-based Human Activity Recognition
    Shirahama, Kimiaki
    Koeping, Lukas
    Grzegorzek, Marcin
    UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, : 197 - 200
  • [8] Deep learning for sensor-based activity recognition: A survey
    Wang, Jindong
    Chen, Yiqiang
    Hao, Shuji
    Peng, Xiaohui
    Hu, Lisha
    PATTERN RECOGNITION LETTERS, 2019, 119 : 3 - 11
  • [9] Lifelong Learning in Sensor-Based Human Activity Recognition
    Ye, Juan
    Dobson, Simon
    Zambonelli, Franco
    IEEE PERVASIVE COMPUTING, 2019, 18 (03) : 49 - 58
  • [10] Ensemble Approach for Sensor-Based Human Activity Recognition
    Brajesh, Sunidhi
    Ray, Indraneel
    UBICOMP/ISWC '20 ADJUNCT: PROCEEDINGS OF THE 2020 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2020 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2020, : 296 - 300