Subject variability in sensor-based activity recognition

被引:6
|
作者
Jimale, Ali Olow [1 ,2 ]
Noor, Mohd Halim Mohd [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
[2] SIMAD Univ, Fac Comp, Mogadishu, Somalia
关键词
Activity recognition; Deep learning; Machine learning; Subject variability; MONITORING-SYSTEM;
D O I
10.1007/s12652-021-03465-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building classification models in activity recognition is based on the concept of exchangeability. While splitting the dataset into training and test sets, we assume that the training set is exchangeable with the test set and expect good classification performance. However, this assumption is invalid due to subject variability of the training and test sets due to age differences. This happens when the classification models are trained with adult dataset and tested it with elderly dataset. This study investigates the effects of subject variability on activity recognition using inertial sensor. Two different datasets-one locally collected from 15 elders and another public from 30 adults with eight types of activities-were used to evaluate the assessment techniques using ten-fold cross-validation. Three sets of experiments have been conducted: experiments on the public dataset only, experiments on the local dataset only, and experiments on public (as training) and local (as test) datasets using machine learning and deep learning classifiers including single classifiers (Support Vector Machine, Decision Tree, K-Nearest Neighbors), ensemble classifiers (Adaboost, Random Forest, and XGBoost), and Convolutional Neural Network. The experimental results show that there is a significant performance drop in activity recognition on different subjects with different age groups. It demonstrates that on average the drop in recognition accuracy is 9.75 and 12% for machine learning and deep learning models respectively. This confirms that subject variability concerning age is a valid problem that degrades the performance of activity recognition models.
引用
下载
收藏
页码:3261 / 3274
页数:14
相关论文
共 50 条
  • [41] Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
    Fong, Simon
    Song, Wei
    Cho, Kyungeun
    Wong, Raymond
    Wong, Kelvin K. L.
    SENSORS, 2017, 17 (03)
  • [42] FedCLAR: Federated Clustering for Personalized Sensor-Based Human Activity Recognition
    Presotto, Riccardo
    Civitarese, Gabriele
    Bettini, Claudio
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2022, : 227 - 236
  • [43] Evaluation of machine learning approaches for sensor-based human activity recognition
    Yousif, Hala Muhanad
    Abdulah, Dhahir Abdulhade
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1183 - 1200
  • [44] Comparison of Sensor-Based Datasets for Human Activity Recognition in Wearable IoT
    Khare, Shivanjali
    Sarkar, Sayani
    Totaro, Michael
    2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [45] Sensor-Based Human Activity Recognition in a Multi-user Scenario
    Wang, Liang
    Gu, Tao
    Tao, Xianping
    Lu, Jian
    AMBIENT INTELLIGENCE, PROCEEDINGS, 2009, 5859 : 78 - +
  • [46] SenseMLP: a parallel MLP architecture for sensor-based human activity recognition
    Li, Weilin
    Guo, Jiaming
    Wu, Hong
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [47] Towards Model Development for Sensor-Based Activity Recognition at the Construction Site
    Tettamanti, Carla
    Giordano, Marco
    Altheimer, Julia
    Linhart, Lukas
    Magno, Michele
    2023 9TH INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES, IWASI, 2023, : 305 - 310
  • [48] Deep Triplet Networks with Attention for Sensor-based Human Activity Recognition
    Khaertdinov, Bulat
    Ghaleb, Esam
    Asteriadis, Stylianos
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2021,
  • [49] AutoAugHAR: Automated Data Augmentation for Sensor-based Human Activity Recognition
    Zhou, Yexu
    Zhao, Haibin
    Huang, Yiran
    Roeddiger, Tobias
    Kurnaz, Murat
    Riedel, Till
    Beigl, Michael
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (02):
  • [50] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39