The log-Brunn-Minkowski inequality

被引:217
|
作者
Boeroeczky, Karoly J. [2 ]
Lutwak, Erwin [1 ]
Yang, Deane [1 ]
Zhang, Gaoyong [1 ]
机构
[1] NYU, Polytech Inst, Brooklyn, NY USA
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1051 Budapest, Hungary
基金
美国国家科学基金会;
关键词
Brunn-Minkowski inequality; Brunn-Minkowski-Firey inequality; Minkowski mixed-volume inequality; Minkowski-Firey L-p-combinations; VOLUME INEQUALITIES; FIREY THEORY; AFFINE; BODIES; CLASSIFICATION; CURVATURE; SHAPES;
D O I
10.1016/j.aim.2012.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For origin-symmetric convex bodies the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are "equivalent" in that once either of these inequalities is established, the other Must follow as a consequence. All of the conjectured inequalities are established for plane convex bodies. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1974 / 1997
页数:24
相关论文
共 50 条
  • [1] Notes on the log-Brunn-Minkowski inequality
    Yunlong Yang
    Nan Jiang
    Deyan Zhang
    Acta Mathematica Scientia, 2023, 43 : 2333 - 2346
  • [2] Notes on the log-Brunn-Minkowski inequality
    Yang, Yunlong
    Jiang, Nan
    Zhang, Deyan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2333 - 2346
  • [3] NOTES ON THE LOG-BRUNN-MINKOWSKI INEQUALITY
    杨云龙
    江楠
    张德燕
    Acta Mathematica Scientia, 2023, 43 (06) : 2333 - 2346
  • [4] LOG-BRUNN-MINKOWSKI INEQUALITY UNDER SYMMETRY
    Boroczky, Karoly J.
    Kalantzopoulos, Pavlos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5987 - 6013
  • [5] Remarks on the conjectured log-Brunn-Minkowski inequality
    Saroglou, Christos
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 353 - 365
  • [6] A new proof of the Log-Brunn-Minkowski inequality
    Ma, Lei
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 75 - 82
  • [7] THE LOG-BRUNN-MINKOWSKI INEQUALITY IN R3
    Yang, Yunlong
    Zhang, Deyan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4465 - 4475
  • [8] DAR'S CONJECTURE AND THE LOG-BRUNN-MINKOWSKI INEQUALITY
    Xi, Dongmeng
    Leng, Gangsong
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (01) : 145 - 189
  • [9] The Dual Log-Brunn-Minkowski Inequalities
    Wang, Wei
    Liu, Lijuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 909 - 919
  • [10] ON DISCRETE LOG-BRUNN-MINKOWSKI TYPE INEQUALITIES
    Cifre, Maria A. Hernandez
    Lucas, Eduardo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1748 - 1760