Remarks on the conjectured log-Brunn-Minkowski inequality

被引:64
|
作者
Saroglou, Christos [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77840 USA
关键词
Brunn-Minkowski theory; Isoperimetric problems; B-conjecture;
D O I
10.1007/s10711-014-9993-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boroczky, Lutwak, Yang and Zhang recently conjectured a certain strengthening of the Brunn-Minkowski inequality for symmetric convex bodies, the so-called log-Brunn-Minkowski inequality. We establish this inequality together with its equality cases for pairs of convex bodies that are both unconditional with respect to some orthonormal basis. Applications of this fact are discussed. Moreover, we prove that the log-Brunn-Minkowski inequality is equivalent to the (B)-Theorem for the uniform measure of the cube (this has been proven by Cordero-Erasquin, Fradelizi and Maurey for the gaussian measure instead).
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [1] Remarks on the conjectured log-Brunn–Minkowski inequality
    Christos Saroglou
    Geometriae Dedicata, 2015, 177 : 353 - 365
  • [2] The log-Brunn-Minkowski inequality
    Boeroeczky, Karoly J.
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1974 - 1997
  • [3] Notes on the log-Brunn-Minkowski inequality
    Yunlong Yang
    Nan Jiang
    Deyan Zhang
    Acta Mathematica Scientia, 2023, 43 : 2333 - 2346
  • [4] Notes on the log-Brunn-Minkowski inequality
    Yang, Yunlong
    Jiang, Nan
    Zhang, Deyan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2333 - 2346
  • [5] NOTES ON THE LOG-BRUNN-MINKOWSKI INEQUALITY
    杨云龙
    江楠
    张德燕
    Acta Mathematica Scientia, 2023, 43 (06) : 2333 - 2346
  • [6] LOG-BRUNN-MINKOWSKI INEQUALITY UNDER SYMMETRY
    Boroczky, Karoly J.
    Kalantzopoulos, Pavlos
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5987 - 6013
  • [7] A new proof of the Log-Brunn-Minkowski inequality
    Ma, Lei
    GEOMETRIAE DEDICATA, 2015, 177 (01) : 75 - 82
  • [8] THE LOG-BRUNN-MINKOWSKI INEQUALITY IN R3
    Yang, Yunlong
    Zhang, Deyan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4465 - 4475
  • [9] DAR'S CONJECTURE AND THE LOG-BRUNN-MINKOWSKI INEQUALITY
    Xi, Dongmeng
    Leng, Gangsong
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2016, 103 (01) : 145 - 189
  • [10] The Dual Log-Brunn-Minkowski Inequalities
    Wang, Wei
    Liu, Lijuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (04): : 909 - 919