Remarks on the conjectured log-Brunn-Minkowski inequality

被引:64
|
作者
Saroglou, Christos [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77840 USA
关键词
Brunn-Minkowski theory; Isoperimetric problems; B-conjecture;
D O I
10.1007/s10711-014-9993-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boroczky, Lutwak, Yang and Zhang recently conjectured a certain strengthening of the Brunn-Minkowski inequality for symmetric convex bodies, the so-called log-Brunn-Minkowski inequality. We establish this inequality together with its equality cases for pairs of convex bodies that are both unconditional with respect to some orthonormal basis. Applications of this fact are discussed. Moreover, we prove that the log-Brunn-Minkowski inequality is equivalent to the (B)-Theorem for the uniform measure of the cube (this has been proven by Cordero-Erasquin, Fradelizi and Maurey for the gaussian measure instead).
引用
收藏
页码:353 / 365
页数:13
相关论文
共 50 条
  • [41] On some generalizations of the Brunn-Minkowski inequality
    Zheng, Yanpeng
    Jiang, Xiaoyu
    Chen, Xiaoting
    Alsaadi, Fawaz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 586 : 103 - 110
  • [42] Quantitative stability for the Brunn-Minkowski inequality
    Figalli, Alessio
    Jerison, David
    ADVANCES IN MATHEMATICS, 2017, 314 : 1 - 47
  • [43] BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE
    BORELL, C
    INVENTIONES MATHEMATICAE, 1975, 30 (02) : 207 - 216
  • [44] The Brunn-Minkowski inequality and nonconvex sets
    Ruzsa, IZ
    GEOMETRIAE DEDICATA, 1997, 67 (03) : 337 - 348
  • [45] Triangulations and a Discrete Brunn–Minkowski Inequality in the Plane
    Károly J. Böröczky
    Máté Matolcsi
    Imre Z. Ruzsa
    Francisco Santos
    Oriol Serra
    Discrete & Computational Geometry, 2020, 64 : 396 - 426
  • [46] ON A DISCRETE BRUNN-MINKOWSKI TYPE INEQUALITY
    Hernandez Cifre, Maria A.
    Iglesias, David
    Yepes Nicolas, Jesus
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 1840 - 1856
  • [47] THE BRUNN-MINKOWSKI INEQUALITY FOR RANDOM SETS
    VITALE, RA
    JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (02) : 286 - 293
  • [48] A Brunn-Minkowski inequality for the integer lattice
    Gardner, RJ
    Gronchi, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) : 3995 - 4024
  • [49] The Brunn-Minkowski inequality for volume differences
    Leng, GS
    ADVANCES IN APPLIED MATHEMATICS, 2004, 32 (03) : 615 - 624
  • [50] More Generalizations of Hartfiel’s Inequality and the Brunn–Minkowski Inequality
    Sheng Dong
    Qing-Wen Wang
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 21 - 29