Understanding of the density profile shape, electron heat transport and internal transport barriers observed in ASDEX Upgrade

被引:19
|
作者
Peeters, AG
Angioni, C
Apostoliceanu, M
Pereverzev, GV
Quigley, E
Ryter, F
Strintzi, D
Jenko, F
Fahrbach, U
Fuchs, C
Gehre, O
Hobirk, J
Kurzan, B
Maggi, CF
Manini, A
McCarthy, PJ
Meister, H
Schweinzer, J
Stober, J
Suttrop, W
Tardini, G
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
[2] Univ Coll Cork, EURATOM Assoc DCU, Cork, Ireland
关键词
D O I
10.1088/0029-5515/45/9/014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper several transport phenomena are described and explained through a (quasi) linear description of the micro-instabilities. This paper deals with the following phenomena: density peaking, electron heat transport, density pump-out, reactor density profiles and the stabilization of the ion temperature gradient (ITG) mode in transport barriers. Density peaking is observed to increase with decreasing collisionality-a phenomenon that can be explained by the influence of collisions on the trapped electron response. The density pump-out due to central electron heating is observed to occur only if the dominant instability is the trapped electron mode (TEM). The proposed explanation involves the thermo-diffusive contribution to the particle flux which is outwards for the TEM while it is inwards for the ITG. The insight in the density profile behaviour can be used to predict moderately peaked density profiles in a reactor. Collisionality is also found to influence the electron heat flux in discharges with dominant electron heating even at relatively small values of the density. The dominant instability under dominant electron heating is found to be the TEM, and the dependence of the electron heat flux on the electron temperature gradient is reasonably described by the quasi-linear results. At higher density (and collisionality) the growth rate of the TEM is reduced and a transition to a dominant ITG is found. This transition is reflected in the speed of the electron heat pulse propagation. Finally, it has been found that the ITG under experimentally relevant conditions is not stabilized by a uniform radial electric field.
引用
收藏
页码:1140 / 1147
页数:8
相关论文
共 50 条
  • [41] Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode
    Sieglin, B.
    Eich, T.
    Faitsch, M.
    Herrmann, A.
    Scarabosio, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (05)
  • [42] KEY ROLE OF THE CURRENT DENSITY PROFILE ON CORE CONFINEMENT AND TRANSPORT IN TORE SUPRA PLASMAS: ELECTRON HEAT AND PARTICLE TRANSPORT
    Hoang, G. T.
    FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (03) : 1417 - 1431
  • [43] Global plasma oscillations in electron internal transport barriers in TCV
    Udintsev, V. S.
    Sauter, O.
    Asp, E.
    Fable, E.
    Goodman, T. P.
    Turri, G.
    Graves, J. P.
    Scarabosio, A.
    Zhuang, G.
    Zucca, C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
  • [44] Electron and ion internal transport barriers in Tore Supra and JET
    Litaudon, X
    Aniel, T
    Baranov, Y
    Bartlett, D
    Bécoulet, A
    Challis, C
    Conway, GD
    Cottrell, GA
    Ekedahl, A
    Erba, M
    Eriksson, L
    Gormezano, C
    Hoang, GT
    Huysmans, G
    Imbeaux, F
    Joffrin, E
    Mantsinen, M
    Parail, V
    Peysson, Y
    Rochard, F
    Schild, P
    Sips, A
    Söldner, FX
    Tubbing, B
    Voitsekhovitch, I
    Ward, D
    Zwingmann, W
    PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 : A733 - A746
  • [45] Electron and ion internal transport barriers in Tore Supra and JET
    Litaudon, X.
    Aniel, T.
    Baranov, Y.
    Bartlett, D.
    Bécoulet, A.
    Challis, C.
    Conway, G.D.
    Cottrell, G.A.
    Ekedahl, A.
    Erba, M.
    Eriksson, L.
    Gormezano, C.
    Hoang, G.T.
    Huysmans, G.
    Imbeaux, F.
    Joffrin, E.
    Mantsinen, M.
    Parail, V.
    Peysson, Y.
    Rochard, F.
    Schild, P.
    Sips, A.
    Söldner, F.X.
    Tubbing, B.
    Voitsekhovitch, I.
    Ward, D.
    Zwingmann, W.
    Plasma Physics and Controlled Fusion, 1999, 41 (Suppl 3A):
  • [46] Interpretation of negative central shear electron internal transport barriers
    Rogister, Andre L.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 : A341 - A346
  • [47] UNDERSTANDING AND PREDICTION OF INTERNAL TRANSPORT BARRIERS IN TOKAMAKS USING INTEGRATED MODELING
    Pankin, A. Y.
    Holod, I.
    Garofalo, A.
    Weiland, J.
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [48] Transport analysis of the effect of zonal flows on electron internal transport barriers in toroidal helical plasmas
    Toda, S.
    Itoh, K.
    Fujisawa, A.
    Itoh, S.-I.
    Yagi, M.
    Fukuyama, A.
    Diamond, P. H.
    Ida, K.
    NUCLEAR FUSION, 2007, 47 (08) : 914 - 919
  • [49] Characteristics of transport in electron internal transport barriers and in the vicinity of rational surfaces in the Large Helical Device
    Ida, K
    Inagaki, S
    Shimozuma, T
    Tamura, N
    Funaba, H
    Narihara, K
    Kubo, S
    Murakami, S
    Wakasa, A
    Yokoyama, M
    Takeiri, Y
    Watanabe, KY
    Tanaka, K
    Yoshinuma, M
    Liang, Y
    Ohyabu, N
    Akiyama, T
    Ashikawa, N
    Emoto, M
    Fujita, T
    Fukuda, T
    Goncharov, P
    Goto, M
    Idei, H
    Ikeda, K
    Isayama, A
    Isobe, M
    Kaneko, O
    Kawahata, K
    Kawazome, H
    Kobuchi, T
    Komori, A
    Kumazawa, R
    Masuzaki, S
    Minami, T
    Miyazawa, J
    Morisaki, T
    Morita, S
    Muto, S
    Mutoh, T
    Nagayama, Y
    Nakamura, Y
    Nakanishi, H
    Narushima, Y
    Nishimura, K
    Noda, N
    Notake, T
    Nozato, H
    Ohdachi, S
    Oka, Y
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2551 - 2557
  • [50] Particle transport analysis of the density build-up after the L-H transition in ASDEX Upgrade
    Willensdorfer, M.
    Fable, E.
    Wolfrum, E.
    Aho-Mantila, L.
    Aumayr, F.
    Fischer, R.
    Reimold, F.
    Ryter, F.
    NUCLEAR FUSION, 2013, 53 (09)