Understanding of the density profile shape, electron heat transport and internal transport barriers observed in ASDEX Upgrade

被引:19
|
作者
Peeters, AG
Angioni, C
Apostoliceanu, M
Pereverzev, GV
Quigley, E
Ryter, F
Strintzi, D
Jenko, F
Fahrbach, U
Fuchs, C
Gehre, O
Hobirk, J
Kurzan, B
Maggi, CF
Manini, A
McCarthy, PJ
Meister, H
Schweinzer, J
Stober, J
Suttrop, W
Tardini, G
机构
[1] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
[2] Univ Coll Cork, EURATOM Assoc DCU, Cork, Ireland
关键词
D O I
10.1088/0029-5515/45/9/014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper several transport phenomena are described and explained through a (quasi) linear description of the micro-instabilities. This paper deals with the following phenomena: density peaking, electron heat transport, density pump-out, reactor density profiles and the stabilization of the ion temperature gradient (ITG) mode in transport barriers. Density peaking is observed to increase with decreasing collisionality-a phenomenon that can be explained by the influence of collisions on the trapped electron response. The density pump-out due to central electron heating is observed to occur only if the dominant instability is the trapped electron mode (TEM). The proposed explanation involves the thermo-diffusive contribution to the particle flux which is outwards for the TEM while it is inwards for the ITG. The insight in the density profile behaviour can be used to predict moderately peaked density profiles in a reactor. Collisionality is also found to influence the electron heat flux in discharges with dominant electron heating even at relatively small values of the density. The dominant instability under dominant electron heating is found to be the TEM, and the dependence of the electron heat flux on the electron temperature gradient is reasonably described by the quasi-linear results. At higher density (and collisionality) the growth rate of the TEM is reduced and a transition to a dominant ITG is found. This transition is reflected in the speed of the electron heat pulse propagation. Finally, it has been found that the ITG under experimentally relevant conditions is not stabilized by a uniform radial electric field.
引用
收藏
页码:1140 / 1147
页数:8
相关论文
共 50 条
  • [21] Stationary H-mode discharges with internal transport barrier on ASDEX upgrade
    Gruber, O
    Wolf, RC
    Dux, R
    Fuchs, C
    Günter, S
    Kallenbach, A
    Lackner, K
    Maraschek, M
    McCarthy, PJ
    Meister, H
    Pereversev, G
    Ryter, F
    Schweinzer, J
    Seidel, U
    Sesnic, S
    Stäbler, A
    Stober, J
    PHYSICAL REVIEW LETTERS, 1999, 83 (09) : 1787 - 1790
  • [22] Simulation of internal transport barriers by means of the canonical profile transport model
    Dnestrovskij, Yu. N.
    Cherkasov, S. V.
    Dnestrovskij, A. Yu.
    Lysenko, S. E.
    Walsh, M. J.
    PLASMA PHYSICS REPORTS, 2006, 32 (01) : 1 - 8
  • [23] Simulation of internal transport barriers by means of the canonical profile transport model
    Yu. N. Dnestrovskij
    S. V. Cherkasov
    A. Yu. Dnestrovskij
    S. E. Lysenko
    M. J. Walsh
    Plasma Physics Reports, 2006, 32 : 1 - 8
  • [24] The role of the source versus the collisionality in predicting a reactor density profile as observed on ASDEX Upgrade discharges
    Fable, E.
    Angioni, C.
    Bobkov, V
    Stober, J.
    Bilato, R.
    Conway, G. D.
    Goerler, T.
    McDermott, R. M.
    Puetterich, T.
    Siccinio, M.
    Suttrop, W.
    Teschke, M.
    Zohm, H.
    NUCLEAR FUSION, 2019, 59 (07)
  • [25] Transport and profile broadening in the private flux region of ASDEX upgrade and role for power exhaust
    Brida, D.
    Grenfell, G.
    Grover, O.
    Silvagni, D.
    Faitsch, M.
    Stroth, U.
    ASDEX Upgrade Team
    EUROfusion Tokamak Exploitation Team
    NUCLEAR FUSION, 2025, 65 (02)
  • [26] Inductive current density perturbations to probe electron internal transport barriers in tokamaks
    Sauter, O
    Coda, S
    Goodman, TP
    Henderson, MA
    Behn, R
    Bottino, A
    Fable, E
    Martynov, A
    Nikkola, P
    Zucca, C
    PHYSICAL REVIEW LETTERS, 2005, 94 (10)
  • [27] Control of electron internal transport barriers in TCV
    Henderson, MA
    Behn, R
    Coda, S
    Condrea, I
    Duval, BP
    Goodman, TP
    Karpushov, A
    Martin, Y
    Martynov, A
    Moret, JM
    Nikkola, P
    Porte, L
    Sauter, O
    Scarabosio, A
    Zhuang, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : A275 - A284
  • [28] The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade
    Odstrcil, T.
    Puetterich, T.
    Angioni, C.
    Bilato, R.
    Gude, A.
    Odstrcil, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (01)
  • [29] Theoretical study of particle transport in electron internal transport barriers in TCV
    Fable, E.
    Sauter, O.
    Marinoni, A.
    Zucca, C.
    THEORY OF FUSION PLASMAS, 2006, 871 : 318 - +
  • [30] Ion heat transport dynamics during edge localized mode cycles at ASDEX Upgrade
    Viezzer, E.
    Cavedon, M.
    Fable, E.
    Laggner, F. M.
    McDermott, R. M.
    Galdon-Quiroga, J.
    Dunne, M. G.
    Kappatou, A.
    Angioni, C.
    Cano-Megias, P.
    Cruz-Zabala, D. J.
    Dux, R.
    Puetterich, T.
    Ryter, F.
    Wolfrum, E.
    NUCLEAR FUSION, 2018, 58 (02)