A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery

被引:29
|
作者
Turgeman, Meital [1 ,2 ]
Wineman-Fisher, Vered [1 ,2 ]
Malchik, Fyodor [3 ]
Saha, Arka [1 ,2 ]
Bergman, Gil [1 ,2 ]
Gavriel, Bar [1 ,2 ]
Penki, Tirupathi Rao [1 ,2 ]
Nimkar, Amey [1 ,2 ]
Baranauskaite, Valeriia [4 ]
Aviv, Hagit [1 ,2 ]
Levi, Mikhael D. [1 ,2 ]
Noked, Malachi [1 ,2 ]
Major, Dan Thomas [1 ,2 ]
Shpigel, Netanel [1 ,2 ]
Aurbach, Doron [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, BINA BIU Ctr Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Al Farabi Kazakh Natl Univ, Ctr Phys & Chem Methods Res & Anal, Alma Ata 050040, Kazakhstan
[4] Ben Gurion Univ Negev, Nat Sci Fac, Dept Chem, IL-84105 Beer Sheva, Israel
来源
CELL REPORTS PHYSICAL SCIENCE | 2022年 / 3卷 / 01期
关键词
aqueous batteries; aqueous electrolytes; hydrogen evolution; LiCl electrolyte; LiMn[!sub]2[!/sub]O[!sub]4[!/sub; TiO[!sub]2[!/sub;
D O I
10.1016/j.xcrp.2021.100688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extensive efforts are currently underway to develop safe and cost-effective electrolytes for large-scale energy storage. In this regard, water-based electrolytes may be an attractive option, but their narrow electrochemical stability window hinders their realization. Although highly concentrated fluorinated electrolytes have been shown to be highly effective in suppression of water splitting, enabling significant widening of the applied potential range, they utilize expensive salts (e.g., lithium bis(trifluoromethane sulfonyl) imide [LiTFSI] or lithium trifluoromethane sulfonate [LiOTf]); hence, they cannot be considered for practical applications. Here, we demonstrate a cost-effective aqueous electrolyte solution combining 14 M LiCl and 4 M CsCl that allows stable operation of a 2.15-V battery comprising a TiO2 anode and LiMn2O4 cathode. Addition of CsCl to the electrolyte plays a double role in system stabilization: the added chloride anions interact with the free water molecules, whereas the chaotropic cesium cations adsorb at the electrified interface, preventing hydrogen formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries
    Kuhnel, R. -S.
    Reber, D.
    Remhof, A.
    Figi, R.
    Bleiner, D.
    Battaglia, C.
    CHEMICAL COMMUNICATIONS, 2016, 52 (68) : 10435 - 10438
  • [32] An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries
    Shang, Yanxin
    Chen, Nan
    Li, Yuejiao
    Chen, Shi
    Lai, Jingning
    Huang, Yongxin
    Qu, Wenjie
    Wu, Feng
    Chen, Renjie
    ADVANCED MATERIALS, 2020, 32 (40)
  • [33] Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries
    Han, Jin
    Zhang, Huang
    Varzi, Alberto
    Passerini, Stefano
    CHEMSUSCHEM, 2018, 11 (21) : 3704 - 3707
  • [34] High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte
    Jiang, Liwei
    Liu, Lilu
    Yue, Jinming
    Zhang, Qiangqiang
    Zhou, Anxing
    Borodin, Oleg
    Suo, Liumin
    Li, Hong
    Chen, Liquan
    Xu, Kang
    Hu, Yong-Sheng
    ADVANCED MATERIALS, 2020, 32 (02)
  • [35] Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN)6 Cathode for Aqueous Al-Ion Battery
    Zhou, Anxing
    Jiang, Liwei
    Yue, Jinming
    Tong, Yuxin
    Zhang, Qiangqiang
    Lin, Zejing
    Liu, Binghang
    Wu, Chuan
    Suo, Liumin
    Hu, Yong-Sheng
    Li, Hong
    Chen, Liquan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) : 41356 - 41362
  • [36] Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte
    Suo, Liumin
    Borodin, Oleg
    Sun, Wei
    Fan, Xiulin
    Yang, Chongyin
    Wang, Fei
    Gao, Tao
    Ma, Zhaohui
    Schroeder, Marshall
    von Cresce, Arthur
    Russell, Selena M.
    Armand, Michel
    Angell, Austen
    Xu, Kang
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (25) : 7136 - 7141
  • [37] High-Performance and Ultra-Stable Aqueous Supercapacitors Based on a Green and Low-Cost Water-In-Salt Electrolyte
    Guo, Junhong
    Ma, Yalan
    Zhao, Kun
    Wang, Yue
    Yang, Baoping
    Cui, Jinfeng
    Yan, Xingbin
    CHEMELECTROCHEM, 2019, 6 (21): : 5433 - 5438
  • [38] Embedded 3D Li+ channels in a water-in-salt electrolyte to develop flexible supercapacitors and lithium-ion batteries
    Dai, Lixin
    Arcelus, Oier
    Sun, Lu
    Wang, Haixiao
    Carrasco, Javier
    Zhang, Hengbin
    Zhang, Wei
    Tang, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (43) : 24800 - 24806
  • [39] Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%
    Huang, Yunfu
    Sun, Wenlu
    Xu, Kui
    Zhang, Jiansheng
    Zhang, Hui
    Li, Jinlin
    He, Liwen
    Cai, Lifeng
    Fu, Fang
    Qin, Jiaqian
    Chen, Hongwei
    ENERGY STORAGE MATERIALS, 2022, 46 : 577 - 582
  • [40] Lithium-ion battery degradation modelling using universal differential equations: Development of a cost-effective parameterisation methodology
    Kuzhiyil, Jishnu Ayyangatu
    Damoulas, Theodoros
    Planella, Ferran Brosa
    Widanage, W. Dhammika
    APPLIED ENERGY, 2025, 382