A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery

被引:29
|
作者
Turgeman, Meital [1 ,2 ]
Wineman-Fisher, Vered [1 ,2 ]
Malchik, Fyodor [3 ]
Saha, Arka [1 ,2 ]
Bergman, Gil [1 ,2 ]
Gavriel, Bar [1 ,2 ]
Penki, Tirupathi Rao [1 ,2 ]
Nimkar, Amey [1 ,2 ]
Baranauskaite, Valeriia [4 ]
Aviv, Hagit [1 ,2 ]
Levi, Mikhael D. [1 ,2 ]
Noked, Malachi [1 ,2 ]
Major, Dan Thomas [1 ,2 ]
Shpigel, Netanel [1 ,2 ]
Aurbach, Doron [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, BINA BIU Ctr Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Al Farabi Kazakh Natl Univ, Ctr Phys & Chem Methods Res & Anal, Alma Ata 050040, Kazakhstan
[4] Ben Gurion Univ Negev, Nat Sci Fac, Dept Chem, IL-84105 Beer Sheva, Israel
来源
CELL REPORTS PHYSICAL SCIENCE | 2022年 / 3卷 / 01期
关键词
aqueous batteries; aqueous electrolytes; hydrogen evolution; LiCl electrolyte; LiMn[!sub]2[!/sub]O[!sub]4[!/sub; TiO[!sub]2[!/sub;
D O I
10.1016/j.xcrp.2021.100688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extensive efforts are currently underway to develop safe and cost-effective electrolytes for large-scale energy storage. In this regard, water-based electrolytes may be an attractive option, but their narrow electrochemical stability window hinders their realization. Although highly concentrated fluorinated electrolytes have been shown to be highly effective in suppression of water splitting, enabling significant widening of the applied potential range, they utilize expensive salts (e.g., lithium bis(trifluoromethane sulfonyl) imide [LiTFSI] or lithium trifluoromethane sulfonate [LiOTf]); hence, they cannot be considered for practical applications. Here, we demonstrate a cost-effective aqueous electrolyte solution combining 14 M LiCl and 4 M CsCl that allows stable operation of a 2.15-V battery comprising a TiO2 anode and LiMn2O4 cathode. Addition of CsCl to the electrolyte plays a double role in system stabilization: the added chloride anions interact with the free water molecules, whereas the chaotropic cesium cations adsorb at the electrified interface, preventing hydrogen formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Molecular Crowded "Water-in-Salt" Polymer Gel Electrolyte for an Ultra-stable Zn-Ion Battery
    Samanta, Prakas
    Ghosh, Souvik
    Kolya, Haradhan
    Kang, Chun-Won
    Murmu, Naresh Chandra
    Kuila, Tapas
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1138 - 1148
  • [22] "Water-in-Salt" Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting
    Suo, Liumin
    Borodin, Oleg
    Wang, Yuesheng
    Rong, Xiaohui
    Sun, Wei
    Fan, Xiiulin
    Xu, Shuyin
    Schroeder, Marshall A.
    Cresce, Arthur V.
    Wang, Fei
    Yang, Chongyin
    Hu, Yong-Sheng
    Xu, Kang
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2017, 7 (21)
  • [23] Water-in-salt electrolytes towards sustainable and cost-effective alternatives: Example for zinc-ion batteries
    Burton, Tobias F.
    Jommongkol, Rossukon
    Zhu, Yachao
    Deebansok, Siraprapha
    Chitbankluai, Khwanrudee
    Deng, Jie
    Fontaine, Olivier
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 35
  • [24] An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density
    Tong, Zhongqiu
    Lian, Ruqian
    Yang, Rui
    Kang, Tianxing
    Feng, Jianrui
    Shen, Dong
    Wu, Yan
    Cui, Xiao
    Wang, Hui
    Tang, Yongbing
    Lee, Chun-Sing
    ENERGY STORAGE MATERIALS, 2022, 44 : 497 - 507
  • [25] Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below-10 °C
    Becker, Maximilian
    Kuehnel, Ruben-Simon
    Battaglia, Corsin
    CHEMICAL COMMUNICATIONS, 2019, 55 (80) : 12032 - 12035
  • [26] High-voltage bi-redox lithium-ion capacitor enabled by energizing free water in "water-in-salt" electrolyte
    Yan, Xiaojun
    Zhao, Xiaoli
    Liu, Congcong
    Wang, Shengping
    Zhang, Yijie
    Guo, Min
    Wang, Yuanyuan
    Dai, Liyi
    Yang, Xiaowei
    JOURNAL OF POWER SOURCES, 2019, 423 : 331 - 338
  • [27] High-voltage and long-lasting aqueous chlorine-ion battery by virtue of "water-in-salt'' electrolyte
    Li, Tong
    Li, Mingqiang
    Li, Hang
    Zhao, Hu
    ISCIENCE, 2021, 24 (01)
  • [28] Interfacial Potentiodynamics of "Water-in-Salt" Electrolytes in Aqueous Lithium-Ion Batteries Using Nonlinear Spectroscopy and Molecular Simulations
    Schmelz, Bruno
    Zhour, Kazem
    Kraemer, Susanna
    Gruenebaum, Mariano
    Diddens, Diddo
    Braunschweig, Bjoern
    Montes-Campos, Hadrian
    Baghernejad, Masoud
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (47): : 20378 - 20386
  • [29] "Water-in-Salt" electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries
    Sun, Wei
    Suo, Liumin
    Wang, Fei
    Eidson, Nico
    Yang, Chongyin
    Han, Fudong
    Ma, Zhaohui
    Gao, Tao
    Zhu, Min
    Wang, Chunsheng
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 82 : 71 - 74
  • [30] Diatom-frustule catalyst supported multiwalled carbon nanotubes: Scalable and cost-effective synthesis and stable anode for lithium-ion battery
    Garapati, Meenakshi Seshadhri
    Saroja, Ajay Piriya Vijaya Kumar
    Sundara, Ramaprabhu
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2020, 261