A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery

被引:29
|
作者
Turgeman, Meital [1 ,2 ]
Wineman-Fisher, Vered [1 ,2 ]
Malchik, Fyodor [3 ]
Saha, Arka [1 ,2 ]
Bergman, Gil [1 ,2 ]
Gavriel, Bar [1 ,2 ]
Penki, Tirupathi Rao [1 ,2 ]
Nimkar, Amey [1 ,2 ]
Baranauskaite, Valeriia [4 ]
Aviv, Hagit [1 ,2 ]
Levi, Mikhael D. [1 ,2 ]
Noked, Malachi [1 ,2 ]
Major, Dan Thomas [1 ,2 ]
Shpigel, Netanel [1 ,2 ]
Aurbach, Doron [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, BINA BIU Ctr Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] Al Farabi Kazakh Natl Univ, Ctr Phys & Chem Methods Res & Anal, Alma Ata 050040, Kazakhstan
[4] Ben Gurion Univ Negev, Nat Sci Fac, Dept Chem, IL-84105 Beer Sheva, Israel
来源
CELL REPORTS PHYSICAL SCIENCE | 2022年 / 3卷 / 01期
关键词
aqueous batteries; aqueous electrolytes; hydrogen evolution; LiCl electrolyte; LiMn[!sub]2[!/sub]O[!sub]4[!/sub; TiO[!sub]2[!/sub;
D O I
10.1016/j.xcrp.2021.100688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extensive efforts are currently underway to develop safe and cost-effective electrolytes for large-scale energy storage. In this regard, water-based electrolytes may be an attractive option, but their narrow electrochemical stability window hinders their realization. Although highly concentrated fluorinated electrolytes have been shown to be highly effective in suppression of water splitting, enabling significant widening of the applied potential range, they utilize expensive salts (e.g., lithium bis(trifluoromethane sulfonyl) imide [LiTFSI] or lithium trifluoromethane sulfonate [LiOTf]); hence, they cannot be considered for practical applications. Here, we demonstrate a cost-effective aqueous electrolyte solution combining 14 M LiCl and 4 M CsCl that allows stable operation of a 2.15-V battery comprising a TiO2 anode and LiMn2O4 cathode. Addition of CsCl to the electrolyte plays a double role in system stabilization: the added chloride anions interact with the free water molecules, whereas the chaotropic cesium cations adsorb at the electrified interface, preventing hydrogen formation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery (vol 3, 100688, 2022)
    Turgeman, Meital
    Wineman-Fisher, Vered
    Malchik, Fyodor
    Saha, Arka
    Bergman, Gil
    Gavriel, Bar
    Penki, Tirupathi Rao
    Nimkar, Amey
    Baranauskaite, Valeriia
    Aviv, Hagit
    Levi, Mikhael D.
    Noked, Malachi
    Major, Dan Thomas
    Shpigel, Netanel
    Aurbach, Doron
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (03):
  • [2] "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
    Suo, Liumin
    Borodin, Oleg
    Gao, Tao
    Olguin, Marco
    Ho, Janet
    Fan, Xiulin
    Luo, Chao
    Wang, Chunsheng
    Xu, Kang
    SCIENCE, 2015, 350 (6263) : 938 - 943
  • [3] Localized Water-In-Salt Electrolyte for Aqueous Lithium-Ion Batteries
    Jaumaux, Pauline
    Yang, Xu
    Zhang, Bao
    Safaei, Javad
    Tang, Xiao
    Zhou, Dong
    Wang, Chunsheng
    Wang, Guoxiu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (36) : 19965 - 19973
  • [4] Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors
    Shengyang Dong
    Yi Wang
    Chenglong Chen
    Laifa Shen
    Xiaogang Zhang
    Nano-Micro Letters, 2020, (12) : 110 - 120
  • [5] Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors
    Shengyang Dong
    Yi Wang
    Chenglong Chen
    Laifa Shen
    Xiaogang Zhang
    Nano-Micro Letters, 2020, 12 (12) : 110 - 120
  • [6] Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors
    Dong, Shengyang
    Wang, Yi
    Chen, Chenglong
    Shen, Laifa
    Zhang, Xiaogang
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [7] Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors
    Shengyang Dong
    Yi Wang
    Chenglong Chen
    Laifa Shen
    Xiaogang Zhang
    Nano-Micro Letters, 2020, 12
  • [8] Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte
    Kwak, Kyungwon (kkwak@korea.ac.kr), 1600, American Chemical Society (140):
  • [9] Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte
    Lim, Joonhyung
    Park, Kwanghee
    Lee, Hochan
    Kim, Jungyu
    Kwak, Kyungwon
    Cho, Minhaeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (46) : 15661 - 15667
  • [10] Paper-based aqueous Al ion battery with water-in-salt electrolyte
    Wang, Yifei
    Pan, Wending
    Leong, Kee Wah
    Zhang, Yingguang
    Zhao, Xiaolong
    Luo, Shijing
    Leung, Dennis Y. C.
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (05) : 1380 - 1388