共 50 条
Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0)
被引:97
|作者:
Jagannatha, Abhyuday
[1
]
Liu, Feifan
[2
]
Liu, Weisong
[3
,4
]
Yu, Hong
[1
,3
,4
,5
]
机构:
[1] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
[2] Univ Massachusetts, Med Sch, Dept Quantitat Hlth Sci & Radiol, Worcester, MA 01605 USA
[3] Univ Massachusetts, Dept Comp Sci, 220 Pawtucket St, Lowell, MA 01854 USA
[4] Univ Massachusetts, Med Sch, Dept Med, Worcester, MA 01605 USA
[5] Bedford VAMC, Bedford, MA 01730 USA
来源:
基金:
美国国家卫生研究院;
关键词:
SYSTEM;
INFORMATION;
PHARMACOVIGILANCE;
PREDICTION;
SAFETY;
CORPUS;
UMLS;
D O I:
10.1007/s40264-018-0762-z
中图分类号:
R1 [预防医学、卫生学];
学科分类号:
1004 ;
120402 ;
摘要:
IntroductionThis work describes the Medication and Adverse Drug Events from Electronic Health Records (MADE 1.0) corpus and provides an overview of the MADE 1.0 2018 challenge for extracting medication, indication, and adverse drug events (ADEs) from electronic health record (EHR) notes.ObjectiveThe goal of MADE is to provide a set of common evaluation tasks to assess the state of the art for natural language processing (NLP) systems applied to EHRs supporting drug safety surveillance and pharmacovigilance. We also provide benchmarks on the MADE dataset using the system submissions received in the MADE 2018 challenge.MethodsThe MADE 1.0 challenge has released an expert-annotated cohort of medication and ADE information comprising 1089 fully de-identified longitudinal EHR notes from 21 randomly selected patients with cancer at the University of Massachusetts Memorial Hospital. Using this cohort as a benchmark, the MADE 1.0 challenge designed three shared NLP tasks. The named entity recognition (NER) task identifies medications and their attributes (dosage, route, duration, and frequency), indications, ADEs, and severity. The relation identification (RI) task identifies relations between the named entities: medication-indication, medication-ADE, and attribute relations. The third shared task (NER-RI) evaluates NLP models that perform the NER and RI tasks jointly. In total, 11 teams from four countries participated in at least one of the three shared tasks, and 41 system submissions were received in total.ResultsThe best systems F-1 scores for NER, RI, and NER-RI were 0.82, 0.86, and 0.61, respectively. Ensemble classifiers using the team submissions improved the performance further, with an F-1 score of 0.85, 0.87, and 0.66 for the three tasks, respectively.ConclusionMADE results show that recent progress in NLP has led to remarkable improvements in NER and RI tasks for the clinical domain. However, some room for improvement remains, particularly in the NER-RI task.
引用
收藏
页码:99 / 111
页数:13
相关论文