Extracting social determinants of health from electronic health records using natural language processing: a systematic review

被引:73
|
作者
Patra, Braja G. [1 ]
Sharma, Mohit M. [1 ]
Vekaria, Veer [1 ]
Adekkanattu, Prakash [2 ]
Patterson, Olga, V [3 ,4 ]
Glicksberg, Benjamin [5 ]
Lepow, Lauren A. [5 ]
Ryu, Euijung [6 ]
Biernacka, Joanna M. [6 ]
Furmanchuk, Al'ona [7 ]
George, Thomas J. [8 ]
Hogan, William [9 ]
Wu, Yonghui [8 ]
Yang, Xi [8 ]
Bian, Jiang [8 ]
Weissman, Myrna [10 ]
Wickramaratne, Priya [10 ]
Mann, J. John [10 ]
Olfson, Mark [10 ]
Campion, Thomas R., Jr. [1 ,2 ]
Weiner, Mark [1 ]
Pathak, Jyotishman [1 ]
机构
[1] Weill Cornell Med, Dept Populat Hlth Sci, 425 E 61st St,Suite 301, New York, NY 10065 USA
[2] Weill Cornell Med, Informat Technol & Serv, New York, NY 10065 USA
[3] Univ Utah, Dept Internal Med, Div Epidemiol, Salt Lake City, UT 84112 USA
[4] US Dept Vet Affairs, Salt Lake City, UT USA
[5] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[6] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN USA
[7] Northwestern Univ, Chicago, IL 60611 USA
[8] Univ Florida, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[9] Univ Florida, Coll Med, Dept Med, Div Hematol & Oncol, Gainesville, FL USA
[10] Columbia Univ, Vagelos Coll Phys & Surg, New York, NY USA
关键词
social determinants of health; population health outcomes; electronic health records; natural language processing; information extraction; machine learning; PROBLEM OPIOID USE; BINGE-EATING DISORDER; AUTOMATED IDENTIFICATION; UNSTRUCTURED DATA; CARE; VALIDATION; ABUSE; RISK;
D O I
10.1093/jamia/ocab170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Social determinants of health (SDoH) are nonclinical dispositions that impact patient health risks and clinical outcomes. Leveraging SDoH in clinical decision-making can potentially improve diagnosis, treatment planning, and patient outcomes. Despite increased interest in capturing SDoH in electronic health records (EHRs), such information is typically locked in unstructured clinical notes. Natural language processing (NLP) is the key technology to extract SDoH information from clinical text and expand its utility in patient care and research. This article presents a systematic review of the state-of-the-art NLP approaches and tools that focus on identifying and extracting SDoH data from unstructured clinical text in EHRs. Materials and Methods: A broad literature search was conducted in February 2021 using 3 scholarly databases (ACL Anthology, PubMed, and Scopus) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 6402 publications were initially identified, and after applying the study inclusion criteria, 82 publications were selected for the final review. Results: Smoking status (n=27), substance use (n=21), homelessness (n=20), and alcohol use (n=15) are the most frequently studied SDoH categories. Homelessness (n=7) and other less-studied SDoH (eg, education, financial problems, social isolation and support, family problems) are mostly identified using rule-based approaches. In contrast, machine learning approaches are popular for identifying smoking status (n=13), substance use (n=9), and alcohol use (n=9). Conclusion: NLP offers significant potential to extract SDoH data from narrative clinical notes, which in turn can aid in the development of screening tools, risk prediction models, and clinical decision support systems.
引用
收藏
页码:2716 / 2727
页数:12
相关论文
共 50 条
  • [1] Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing
    Han, Sifei
    Zhang, Robert F.
    Shi, Lingyun
    Richie, Russell
    Liu, Haixia
    Tseng, Andrew
    Quan, Wei
    Ryan, Neal
    Brent, David
    Tsui, Fuchiang R.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 127
  • [2] Natural language processing systems for extracting information from electronic health records about activities of daily living. A systematic review
    Wieland-Jorna, Yvonne
    van Kooten, Daan
    Verheij, Robert A.
    de Man, Yvonne
    Francke, Anneke L.
    Oosterveld-Vlug, Mariska G.
    [J]. JAMIA OPEN, 2024, 7 (02)
  • [3] Extracting Family History Information From Electronic Health Records: Natural Language Processing Analysis
    Rybinski, Maciej
    Dai, Xiang
    Singh, Sonit
    Karimi, Sarvnaz
    Nguyen, Anthony
    [J]. JMIR MEDICAL INFORMATICS, 2021, 9 (04)
  • [4] Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
    Wu, Wenbo
    Holkeboer, Kaes J.
    Kolawole, Temidun O.
    Carbone, Lorrie
    Mahmoudi, Elham
    [J]. HEALTH SERVICES RESEARCH, 2023, 58 (06) : 1292 - 1302
  • [5] Evaluation of a Natural Language Processing Approach to Identify Social Determinants of Health in Electronic Health Records in a Diverse Community Cohort
    Rouillard, Christopher J.
    Nasser, Mahmoud A.
    Hu, Haihong
    Roblin, Douglas W.
    [J]. MEDICAL CARE, 2022, 60 (03) : 248 - 255
  • [6] Using Natural Language Processing to Predict Risk in Electronic Health Records
    Duy Van Le
    Montgomery, James
    Kirkby, Kenneth
    Scanlan, Joel
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 574 - 578
  • [7] Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records
    Fu, Sunyang
    Lopes, Guilherme S.
    Pagali, Sandeep R.
    Thorsteinsdottir, Bjoerg
    LeBrasseur, Nathan K.
    Wen, Andrew
    Liu, Hongfang
    Rocca, Walter A.
    Olson, Janet E.
    St Sauver, Jennifer
    Sohn, Sunghwan
    [J]. JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2022, 77 (03): : 524 - 530
  • [8] Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review
    Hossain, Elias
    Rana, Rajib
    Higgins, Niall
    Soar, Jeffrey
    Barua, Prabal Datta
    Pisani, Anthony R.
    Turner, Kathryn
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [9] Social determinants of health in electronic health records and their impact on analysis and risk prediction: A systematic review
    Chen, Min
    Tan, Xuan
    Padman, Rema
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (11) : 1764 - 1773
  • [10] Neural Natural Language Processing for unstructured data in electronic health records: A review
    Li, Irene
    Pan, Jessica
    Goldwasser, Jeremy
    Verma, Neha
    Wong, Wai Pan
    Nuzumlali, Muhammed Yavuz
    Rosand, Benjamin
    Li, Yixin
    Zhang, Matthew
    Chang, David
    Taylor, R. Andrew
    Krumholz, Harlan M.
    Radev, Dragomir
    [J]. COMPUTER SCIENCE REVIEW, 2022, 46